Skip to main content
Log in

Electrochemical determination of caspase-3 using signal amplification by HeLa cells modified with silver nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor capable of quantitative determination of caspase-3 activities was developed. A thiolated peptide whose sequence contained a caspase-3 cleaved site and a cell penetration sequence was preimmobilized onto an electrode. The quantification of caspase-3 was accomplished after cell penetration and the subsequent adsorption of silver nanoparticles (AgNPs). The oxidation current of AgNPs was found to be inversely proportional to the concentration of caspase-3 between 0.02 and 0.2 U/mL. A detection limit of 0.02 U/mL for caspase-3 was achieved due to the large number of positively charged AgNPs adsorbed onto the negatively charged cells. The proof of concept was demonstrated by monitoring the cleavage of surface-confined peptide substrates by caspase-3 in cell lysates. The current sensor could be extended to detect cells by replacing the surface-confined peptide with aptamers that recognize cells. Thus, the use of a cell as a matrix for AgNPs shows excellent potential for constructing electrochemical sensors and provides a useful alternative for sensor development in the future.

Graphical abstract

Cells modified with silver nanoparticles were utilized as the electrochemical readout of an electrochemical assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boeneman K, Mei BC, Dennis AM, Bao G, Deschamps JR, Mattoussi H, Medintz IL (2009) Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. J Am Chem Soc 131:3828–3829

    Article  CAS  Google Scholar 

  2. Shi H, Kwok RT, Liu J, Xing B, Tang BZ, Liu B (2012) Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J Am Chem Soc 134:17972–17981

    Article  CAS  Google Scholar 

  3. Rahman MS, Kabashima T, Yasmin H, Shibata T, Kai M (2013) A novel fluorescence reaction for N-terminal Ser-containing peptides and its application to assay caspase activity. Anal Biochem 433:79–85

    Article  CAS  Google Scholar 

  4. Pan Y, Guo M, Nie Z, Huang Y, Peng Y, Liu A, Qing M, Yao S (2012) Colorimetric detection of apoptosis based on caspase-3 activity assay using unmodified gold nanoparticles. Chem Commun 48:997–999

    Article  CAS  Google Scholar 

  5. Li Y (2012) Chemiluminescent determination of the activity of caspase-3 using a specific peptide substrate and magnetic beads. Microchim Acta 177:443–447

    Article  CAS  Google Scholar 

  6. Chen H, Mei Q, Hou Y, Zhu X, Koh K, Li X, Li G (2013) Fabrication of a protease sensor for caspase-3 activity detection based on surface plasmon resonance. Analyst 138:5757–5761

    Article  CAS  Google Scholar 

  7. Zhao C, Qiu L, Lv P, Han A, Fang G, Liu J, Wang S (2019) AuNP-peptide probe for caspase-3 detection in living cells by SERS. Analyst 144:1275–1281

    Article  CAS  Google Scholar 

  8. Takano S, Shiomoto S, Inoue KY, Ino K, Shiku H, Matsue T (2014) Electrochemical approach for the development of a simple method for detecting cell apoptosis based on caspase-3 activity. Anal Chem 86:4723–4728

    Article  CAS  Google Scholar 

  9. Liu S, Lin Y, Wang L, Liu T, Cheng C, Wei W, Tang B (2014) Exonuclease III-aided autocatalytic DNA biosensing platform for immobilization-free and ultrasensitive electrochemical detection of nucleic acid and protein. Anal Chem 86:4008–4015

    Article  CAS  Google Scholar 

  10. Zhang C, Zhang S, Jia Y, Li Y, Wang P, Liu Q, Xu Z, Li X, Dong Y (2019) Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of Ag NPs@CS spaced Hemin/rGO. Biosens Bioelectron 126:785–791

    Article  CAS  Google Scholar 

  11. Wang J, Yi X, Tang H, Han H, Wu M, Zhou F (2012) Direct quantification of microRNA at low picomolar level in sera of glioma patients using a competitive hybridization followed by amplified voltammetric detection. Anal Chem 84:6400–6406

    Article  CAS  Google Scholar 

  12. Wang J, Lu Z, Tang H, Wu L, Wang Z, Wu M, Yi X, Wang J (2017) Multiplexed electrochemical detection of miRNAs from sera of glioma patients at different stages via the novel conjugates of conducting magnetic microbeads and diblock oligonucleotide-modified gold nanoparticles. Anal Chem 89:10834–10840

    Article  CAS  Google Scholar 

  13. Lu H, Wu L, Wang J, Wang Z, Yi X, Wang J, Wang N (2018) Voltammetric determination of the Alzheimer’s disease-related ApoE 4 gene from unamplified genomic DNA extracts by ferrocene-capped gold nanoparticles. Microchim Acta 185:549

    Article  Google Scholar 

  14. Zhang J, Cui H, Wei G, Cheng L, Lin Y, Ma G, Hong N, Liao F, Fan H (2020) A double signal amplification electrochemical microRNA biosensor based on catalytic hairpin assembly and bisferrocene label. J Electroanal Chem 858:113816

    Article  CAS  Google Scholar 

  15. Liu X, Song M, Li F (2017) Triplex DNA-based bioanalytical platform for highly sensitive homogeneous electrochemical detection of melamine. Sci Rep 7:4490

    Article  Google Scholar 

  16. Li B, Liu F, Peng Y, Zhou Y, Fan W, Yin H, Ai S, Zhang X (2016) Two-stage cyclic enzymatic amplification method for ultrasensitive electrochemical assay of microRNA-21 in the blood serum of gastric cancer patients. Biosens Bioelectron 79:307–312

    Article  CAS  Google Scholar 

  17. Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129

    Article  CAS  Google Scholar 

  18. Lu Z, Tang H, Wu D, Xia Y, Wu M, Yi X, Li H, Wang J (2016) Amplified voltammetric detection of miRNA from serum samples of glioma patients via combination of conducting magnetic microbeads and ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosens Bioelectron 86:502–507

    Article  CAS  Google Scholar 

  19. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326

  20. Zhao J, Yang L, Tang Y, Yang Y, Yin Y (2017) Supramolecular chemistry-assisted electrochemical method for the assay of endogenous peptidylarginine deiminases activities. ACS Appl Mater Interfaces 9:152–158

    Article  CAS  Google Scholar 

  21. Asadzadeh-Firouzabadi A, Zare HR (2018) Preparation and application of AgNPs/SWCNTs nanohybrid as an electroactive label for sensitive detection of miRNA related to lung cancer. Sensors Actuators B Chem 260:824–831

    Article  CAS  Google Scholar 

  22. Chandra P, Noh HB, Shim YB (2013) Cancer cell detection based on the interaction between an anticancer drug and cell membrane components. Chem Commun 49:1900–1902

    Article  CAS  Google Scholar 

  23. Lierop DV, Krpetic Z, Guerrini L, Larmour IA, Dougan JA, Faulds K, Graham D (2012) Positively charged silver nanoparticles and their effect on surface-enhanced Raman scattering of dye-labelled oligonucleotides. Chem Commun 48:8192–8194

    Article  Google Scholar 

  24. Hu S, Ye B, Tang H, Wu F, Yi X, Yi T, Wu D, Wu L, Wang J (2018) Fabrication of multifunctional monometallic nanohybrids for reactive oxygen species-mediated cell apoptosis and enhanced fluorescence cell imaging. J Mater Chem B 6:1187–1194

    Article  CAS  Google Scholar 

  25. Herbig ME, Assi F, Textor M, Merkle HP (2006) The cell penetrating peptides pVEC and W2-pVEC induce transformation of gel phase domains in phospholipid bilayers without affecting their integrity. Biochemistry 45:3598–3609

    Article  CAS  Google Scholar 

  26. Takeuchi T, Kosuge M, Tadokoro A, Sugiura Y, Nishi M, Kawata M, Sakai N, Matile S, Futaki S (2006) Direct and rapid cytosolic delivery using cell-penetrating peptides mediated by pyrenebutyrate. ACS Chem Biol 1:299–303

    Article  CAS  Google Scholar 

  27. Girvan AC, Teng Y, Casson LK, Thomas SD, Juliger S, Ball MW, Klein JB, Pierce WM Jr, Barve SS, Bates PJ (2006) AGRO100 inhibits activation of nuclear factor-kappaB (NF-kappaB) by forming a complex with NF-kappaB essential modulator (NEMO) and nucleolin. Mol Cancer Ther 5:1790–1799

    Article  CAS  Google Scholar 

  28. Yang B, Chen B, He M, Yin X, Xu C, Hu B (2018) Aptamer-based dual-functional probe for rapid and specific counting and imaging of MCF-7 cells. Anal Chem 90:2355–2361

    Article  CAS  Google Scholar 

  29. Lei J, Ju H (2012) Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev 41:2122–2134

    Article  CAS  Google Scholar 

  30. Yang R, Li Y, Zou K, Meng L, Zhang X, Chen J (2018) A label-free and blocker-free photoelectrochemical strategy for highly sensitive caspase-3 assay. Chem Commun 54:4830–4833

    Article  CAS  Google Scholar 

  31. Khalilzadeh B, Shadjou N, Eskandani M, Charoudeh HN, Omidi Y, Rashidi M-R (2015) A reliable self-assembled peptide based electrochemical biosensor for detection of caspase 3 activity and apoptosis. RSC Adv 5:58316–58326

    Article  CAS  Google Scholar 

  32. Qi G, Sun D, Tian Y, Xu C, Zhang Y, Wang D, Ma K, Xu S, Jin Y (2020) Fast activation and tracing of caspase-3 involved cell apoptosis by combined electrostimulation and smart signal-amplified SERS nanoprobes. Anal Chem 92:7861–7868

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the financial support of this work by the National Natural Science Foundation of China (Nos. 21876208, 21705166), the Natural Science Foundation of Hunan Province (No. 2019JJ50792), the Hunan Provincial Science and Technology Plan Project, China (No. 2019TP1001), and the Program for Innovative Research Team of Science and Technology in the University of Henan Province (21IRTSTHN005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyao Yi or Shengqiang Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., He, Y., Tong, L. et al. Electrochemical determination of caspase-3 using signal amplification by HeLa cells modified with silver nanoparticles. Microchim Acta 188, 110 (2021). https://doi.org/10.1007/s00604-021-04765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04765-6

Keywords

Navigation