Skip to main content
Log in

Determination of ascorbic acid using electrochemiluminescence sensor based on nitrogen and sulfur doping graphene quantum dots with luminol as internal standard

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel internal standard electrochemiluminescence (ECL) sensor has been designed for the detection of ascorbic acid (AA). The adopted dual-emission luminophore (NSGQDs-PEI-luminol-Pt) is composed of nitrogen and sulfur double-doped graphene quantum dots (NSGQDs, as the main luminophore), luminol (as the auxiliary luminophore and internal standard), platinum nanoparticles (Pt NPs, as the co-reaction accelerator), and polyetherimide (PEI, as the linker of NSGQDs and luminol). The results suggest obviously enhanced  ECL intensities by the Förster resonance energy transfer (FRET) between luminol (donor) and NSGQDs (acceptor). In this sensing system, the cathodic ECL intensities of NSGQDs (ECL-1, −1.8 V vs. Ag/AgCl) gradually decrease with increasing concentration of AA, while the anodic ECL intensities of luminol (ECL-2, 0.3 V vs. Ag/AgCl) almost remain essentially constant at a potential window from −2.0 to 0.4 V. The natural logarithm of the ratio between ECL-1 and ECL-2 (ln I (ECL-1/ECL-2)) shows a good linear relationship with AA concentration ranging from 10 to 360 nM. The regression equation is ln I (ECL-1/ECL-2) = − 0.0059 cAA + 3.55 (R2 = 0.992) with a limit of detection of 3.3 nM. Such sensor has also been applied for monitoring AA in human serum. The recovery range was 96.5–105.3% and the relative standard deviation was  1.3–3.3%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valenti G, Zangheri M, Sansaloni SE, Mirasoli M, Penicaud A, Roda A, Paolucci F (2015) Transparent carbon nanotube network for efficient electrochemiluminescence devices. Chem Eur J 21:12640–12645

  2. Rubinstein I, Bard AJ (1981) Electrogenerated chemiluminescence. 37. Aqueous ecl systems based on tris(2,2′-bipyridine)ruthenium(2+) and oxalate or organic acids. J Am Chem Soc 103:512–516

    Article  CAS  Google Scholar 

  3. Liu JL, Zhao M, Zhuo Y, Chai YQ, Yuan R (2017) Highly efficient intramolecular electrochemiluminescence energy transfer for ultrasensitive bioanalysis of aflatoxin m1. Chem Eur J 23:1853–1859

    Article  CAS  Google Scholar 

  4. Chen Y, Zhou S, Li L, Zhu JJ (2017) Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today 12:98–115

    Article  CAS  Google Scholar 

  5. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. J Adv Mater 24:5333–5338

    Article  CAS  Google Scholar 

  6. Sun HJ, Gao N, Wu L, Ren JS, Wei WL, Qu XG (2013) Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chem Eur J 19:13362–13368

    Article  CAS  Google Scholar 

  7. Du Y, Guo SJ (2016) Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8:2532–2543

    Article  CAS  Google Scholar 

  8. Li S, Li Y, Cao J, Zhu J, Fan L, Li X (2014) Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal Chem 86:10201–10207

    Article  CAS  Google Scholar 

  9. Riaz R, Ali M, Sahito IA, Arbab AA, Maiyalagan T, Anjum AS, Ko MJ, Jeong SH (2019) Self-assembled nitrogen-doped graphene quantum dots (N-GQDs) over graphene sheets for superb electro-photocatalytic activity. Appl Surf Sci 480:1035–1046

    Article  CAS  Google Scholar 

  10. Chen HM, Zhang H, Yuan R, Chen SH (2017) Novel double-potential electrochemiluminescence ratiometric strategy in enzyme-based inhibition biosensing for sensitive detection of organophosphorus pesticides. Anal Chem 89:2823–2829

    Article  CAS  Google Scholar 

  11. Zhang HR, Xu JJ, Chen HY (2013) Electrochemiluminescence ratiometry: a new approach to DNA biosensing. Anal Chem 85:5321–5325

    Article  CAS  Google Scholar 

  12. Wang Y, Zhang Y, Sha H, Xiong X, Jia N (2019) Design and biosensing of ratiometric electrochemiluminescence resonance energy transfer aptasensor between g-C3N4 nanosheet and Ru@MOF for amyloid-β protein. ACS Appl Mater Inter 11:36299–36306

    Article  CAS  Google Scholar 

  13. Lin Y, Wang J, Luo F, Guo LH, Qiu B, Lin ZY (2018) Highly reproducible ratiometric aptasensor based on the ratio of amplified electrochemiluminescence signal and stable internal reference electrochemical signal. Electrochim Acta 283:798–805

    Article  CAS  Google Scholar 

  14. Boysen A K, Heal K R, Carlson L T, Ingalls A E (2017) Best-matched internal standard normalization in liquid chromatography-mass spectrometry metabolomics applied to environmental samples. Anal Chem 1363–1369

  15. Gong Q, Qin W, Xiao P, Wu X, Li L, Zhang G, Zhang R, Sun J, Yao SQ, Huang W (2020) Internal standard fluorogenic probe based on vibration-induced emission for visualizing PTP1B in living cells. Chem Commun 56:58–61

    Article  CAS  Google Scholar 

  16. Shuang L, Xiang L, Yuan LL, Hai YZ, Wu LH, Li W (2018) Self-assembly of Au@Ag core-shell nanocubes embedded with internal standard for reliable quantitative SERS measurements. Anal Methods-UK 10:4201–4208

    Article  Google Scholar 

  17. Dong YX, Cao JT, Wang B, Ma SH, Liu YM (2018) Spatial-resolved photoelectrochemical biosensing array based on a CdS@g-C3N4 heterojunction: a universal immunosensing platform for accurate detection. ACS Appl Mater Inter 10:3723–3731

    Article  CAS  Google Scholar 

  18. Organization W H (1970) Requirements of ascorbic acid, vitamin D, vitamin B 12, folate, and iron: report of a joint FAO/WHO expert group. WHO

  19. Bottegal M, Lang L, Miller M, McCord B (2010) Analysis of ascorbic acid based black powder substitutes by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 24:1377–1386

    Article  CAS  Google Scholar 

  20. Zare HR, Nasirizadeh N (2011) A comparison of the electrochemical and electroanalytical behavior of ascorbic acid, dopamine and uric acid at bare, activated and multi-wall carbon nanotubes modified glassy carbon electrodes. J Iran Chem Soc 8:S55–S66

    Article  CAS  Google Scholar 

  21. Li XJ, Sun X, Fan DW, Yan T, Feng R, Wang H, Wu D, Wei Q (2019) A ternary quenching electrochemiluminescence insulin immunosensor based on Mn2+ released from MnO2@Carbon core-shell nanospheres with ascorbic acid quenching AuPdPt-MoS2@TiO2 enhanced luminol. Biosens Bioelectron 142:111551

    Article  CAS  Google Scholar 

  22. Zhang RZ, Adsetts JR, Nie YT, Sun XH, Ding ZF (2018) Electrochemiluminescence of nitrogen- and sulfur-doped graphene quantum dots. Carbon 129:45–53

    Article  CAS  Google Scholar 

  23. Cao J, Zhang H, Liu X, Zhou N, Yang D (2019) Plasmon-coupled förster resonance energy transfer between silicon quantum dots. J Phys Chem C 123:23604–23609

    Article  CAS  Google Scholar 

  24. Cui H, Zou GZ, Lin XQ (2003) Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Anal Chem 75:324–331

    Article  CAS  Google Scholar 

  25. Habibi B, Pournaghi-Azar MH (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry. Electrochim Acta 55:5492–5498

    Article  CAS  Google Scholar 

  26. Ma Q, Li Y, Lin ZH, Tang G, Su XG (2013) A novel ascorbic acid sensor based on the Fe3+/Fe2+ modulated photoluminescence of CdTe quantum dots@SiO2 nanobeads. Nanoscale 5:9726–9731

    Article  CAS  Google Scholar 

  27. Rong M, Lin L, Song X, Wang Y, Zhong Y, Yan J, Feng Y, Zeng X, Chen X (2015) Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens Bioelectron 68:210–217

    Article  CAS  Google Scholar 

  28. Zhang Y, Fang X, Zhao H, Li Z (2018) A highly sensitive and selective detection of Cr (VI) and ascorbic acid based on nitrogen-doped carbon dots. Talanta 181:318–325

    Article  CAS  Google Scholar 

  29. Wang YN, Wang SD, Yang LL, Zhao YF, Yang QF (2020) A luminescent cadmium coordination polymer for highly sensitive detection of ascorbic acid. J Solid State Chem 289:121519

    Article  CAS  Google Scholar 

  30. Liu YH, Wei ZN, Duan WX, Ren CL, Jiang D (2018) A dual-mode sensor for colorimetric and “turn-on” fluorescent detection of ascorbic acid. Dyes Pigments 149:491–497

    Article  CAS  Google Scholar 

  31. Chen H, Li W, Zhao P, Nie Z, Yao S (2015) A CdTe/CdS quantum dots amplified graphene quantum dots anodic electrochemiluminescence platform and the application for ascorbic acid detection in fruits. Electrochim Acta 178:407–413

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22077105) and Natural Science Foundation Project of CQ CSTC (cstc2020jcyj-msxmX0854), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzi Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 916 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Meng, H., Han, Q. et al. Determination of ascorbic acid using electrochemiluminescence sensor based on nitrogen and sulfur doping graphene quantum dots with luminol as internal standard. Microchim Acta 188, 120 (2021). https://doi.org/10.1007/s00604-021-04761-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04761-w

Keywords

Navigation