Skip to main content
Log in

Electrochemical sensing platform based on covalent organic framework materials and gold nanoparticles for high sensitivity determination of theophylline and caffeine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new covalent organic framework (COF) has been prepared with 1,3,6,8-tetra(4-formyl phenyl) pyrene (TFPPy) and 2,6-diaminopyridine (DP) as building units through a Schiff base reaction by a simple tube oven heating procedure and the structure of the COF has been characterized in detail. The obtained DP-Py COF is employed to fabricate a novel electrochemical sensing platform for sensitive and selective determination of theophylline (TP) and caffeine (CAF) simultaneously through compounding with AuNPs; the peak positions of TP and CAF are 0.95 V and 1.28 V, respectively. The synergistic effect between DP-Py COF and AuNPs effectively enhances the analytical sensitivity for the target analytes. Under the optimized experimental conditions, the electrochemical sensing platform shows a sensitive voltammetric response and wide linear range to both TP and CAF, and the detection limits are 0.19 μM and 0.076 μM (S/N = 3), respectively. This method has been successfully used for the determination of TP and CAF in compound paracetamol capsules and black tea samples. The recovery and relative standard deviations (RSD) of TP are 99.3~101% and 97.6~101% and 1.3~2.0% and 1.3~2.1%, respectively, and the recovery and RSD of CAF are 96.1~102% and 99.4~104% and 2.8~3.9% and 1.7~3.2%, respectively. Compared with traditional detection methods, the constructed sensing platform has better performance and is expected to be widely used also in other real sample analyses. 

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hendeles L, Weinberger M (2015) Theophylline a "state of the art" review. Pharmacotherapy 3:2–44

    Article  Google Scholar 

  2. Ma YJ, Jiang DQ, Meng JX, Li MX, Zhao H, Wang Y, Wang LQ (2016) Theophylline: a review of population pharmacokinetic analyses. Clin Pharm Ther 41:594–601

    Article  CAS  Google Scholar 

  3. Švorc L (2013) Determination of caffeine: a comprehensive review on electrochemical methods. Int J Electrochem Sci 84:5755–5773

    Google Scholar 

  4. Dobson NR, Hunt CE (2013) Caffeine use in neonates: indications, pharmacokinetics, clinical effects, outcomes. Neoreviews 14:e540–e550

    Article  Google Scholar 

  5. Tom M, McLellan John A, Caldwell Harris R, Lieberman (2016) A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Res 71:294–312

    Article  Google Scholar 

  6. Dalapati S, Jin SB, Gao J, Xu YH, Nagai A, Jiang DL (2017) An azine-linked covalent organic framework. J Am Chem Soc 135:17310–17313

    Article  Google Scholar 

  7. Li N, Du JJ, Wu D, Liu JC, Li N, Sun ZW, Li GL, Wu YN (2018) Recent advances in facile synthesis and applications of covalent organic framework materials as superior adsorbents in sample pretreatment. Trac-Trend Anal Chem 108:154–166

    Article  CAS  Google Scholar 

  8. Peng YW, Huang Y, Zhu YH, Chen B, Wang LY, Lai ZC, Zhang ZC, Zhao MT, Tan CL, Yang NL, Shao FW, Han Y, Zhang H (2017) Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J Am Chem Soc 139:8698–8704

    Article  CAS  PubMed  Google Scholar 

  9. Xue R, Guo H, Wang T, Gong L, Wang YN, Ai JB, Huang DD, Chen HQ, Yang W (2017) Fluorescence properties and analytical applications of covalent organic frameworks. Anal Methods 9:3737–3750

    Article  CAS  Google Scholar 

  10. Alahakoon SB, Thompson CM, Occhialini G, Smaldone RA (2017) Design principles for covalent organic frameworks in energy storage applications. ChemSusChem 10:2116–2129

    Article  CAS  PubMed  Google Scholar 

  11. Wu Y, Yan DW, Zhang ZY, Matsushita MM, Awaga K (2019) Electron highways into nanochannels of covalent organic frameworks for high electrical conductivity and energy storage. ACS Appl Mater Interfaces 11:7661–7665

    Article  CAS  PubMed  Google Scholar 

  12. Hu JG, Li FH, Wang KK, Han DX, Zhang QX, Yuan JH, Niu L (2012) One-step synthesis of graphene-AuNPs by HMTA and the electrocatalytical application for O2 and H2O2. Talanta 93:345–349

    Article  CAS  PubMed  Google Scholar 

  13. Yosypchuk O, Karásek J, Vyskočil V, Barek J, Pecková K (2012) The use of silver solid amalgam electrodes for voltammetric and amperometric determination of nitrated polyaromatic compounds used as markers of incomplete combustion. Sci World J 2012:231986

    Article  Google Scholar 

  14. Brunetto MDR, Gutierrez L, Delgado Y, Gallignani M, Zambrano A, Gómez Á, Ramos G, Romero C (2007) Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chem 100:459–467

    Article  CAS  Google Scholar 

  15. Brunetto MDR, Cayamaa YD, Gutiérrez L, Roaa SC, Méndeza YC, Gallignani M, Zambrano A, Gómez Á, Ramos G (2009) Headspace gas chromatography–mass spectrometry determination of alkylpyrazines in cocoa liquor samples. Food Chem 100:459–467

    Article  Google Scholar 

  16. Chen ML, Zheng MM, Feng YQ (2010) Preparation of organic–inorganic hybrid silica monolith with octyl and sulfonic acid groups for capillary electrochromatograhpy and application in determination of theophylline and caffeine in beverage. J Chromatogr A 1217:3547–3556

    Article  CAS  PubMed  Google Scholar 

  17. Xia ZZ, Ni YN, Kokot S (2013) Simultaneous determination of caffeine, theophylline and theobromine in food samples by a kinetic spectrophotometric method. Food Chem 141:4087–4093

    Article  CAS  PubMed  Google Scholar 

  18. Jafari MT, Rezaei B, Javaheri M (2011) A new method based on electrospray ionisation ion mobility spectrometry (ESI-IMS) for simultaneous determination of caffeine and theophylline. Food Chem 126:1964–1970

    Article  CAS  PubMed  Google Scholar 

  19. Rabbani MG, Sekizkardes AK, El-Kadri OM, Kaafarani BR, El-Kaderi HM (2012) Pyrene-directed growth of nanoporous benzimidazole-linked nanofibers and their application to selective CO2 capture and separation. J Mater Chem 22:25409–25417

    Article  CAS  Google Scholar 

  20. Marina SV, Andrés GM, Fabio C (2019) Facile strategy for the synthesis of gold@silica hybrid nanoparticles with controlled porosity and Janus morphology. Nanomaterials 9:348

    Article  Google Scholar 

  21. Lussier LS, Sandorfy C, E-Thanh HO, Vocelle D (1987) The effect of acids on the infrared spectra of Schiff bases-II. Imines containing the C=C-C=N and C=C-C=C-C=N units. Photochem Photobiol 45:801–808

    Article  CAS  Google Scholar 

  22. McKean DC, Herrebout W, Law MM, Brenner MJ, Nemchick DJ, Craig NC (2010) Infrared spectra of 12CF2=12CH2 and 12CF2=13CH2, quantum-chemical calculations of anharmonicity, and analyses of resonances. J Phys Chem A 114:5728–5742

    Article  CAS  PubMed  Google Scholar 

  23. Alghanmi RM, Habeeb MM (2013) Spectral and solvation effect studies on charge transfer complex of 2, 6-diaminopyridine with chloranilic acid. J Mol Liq 181:20–28

    Article  CAS  Google Scholar 

  24. Wang J, Yang GR, Wang L, Yan W (2016) Synthesis of one-dimensional NiFe2O4 nanostructures: tunable morphology and high-performance anode materials for Li ion batteries. J Mater Chem A 4:8620–8629

    Article  CAS  Google Scholar 

  25. Dash RK, Yushin G, Gogotsi Y (2012) Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide. Microporous Mesoporous Mater 86:50–57

    Article  Google Scholar 

  26. Ni BX, Zhang P (2013) Research on the relationship between permeability and pore size characteristics of microporous nonwoven geotextile. Adv Mater Res 753-755:792–797

    Article  Google Scholar 

  27. Mei BA, Lau J, Lin T, Tolbert SH, Dunn BS, Pilon L (2018) Physical interpretations of electrochemical impedance spectroscopy of redox active electrodes for electrical energy storage. J Phys Chem C 122:24499–24511

    Article  CAS  Google Scholar 

  28. Huang YL, Shih H, Huang HC, Daugherty J, Wu S, Ramanathan S, Chang C, Mansfeld F (2008) Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS). Corros Sci 50:3569–3575

    Article  CAS  Google Scholar 

  29. Wang Y, Wu T, Bi CY (2015) Simultaneous determination of acetaminophen, theophylline and caffeine using a glassy carbon disk electrode modified with a composite consisting of poly (alizarin violet 3B), multiwalled carbon nanotubes and graphene. Microchim Acta 183:731–739

    Article  Google Scholar 

  30. Ferre S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    Article  CAS  PubMed  Google Scholar 

  31. Nicolae S, Sarada BV, Tryk DA, Fujishima A (2002) Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical application. Electroanalysis 14:721–726

    Article  Google Scholar 

  32. Sato S, Takenaka S (2012) PCR-free telomerase assay using chronocoulometry coupled with hexaammineruthenium(III) chloride. Anal Chem 84:1772–1775

    Article  CAS  PubMed  Google Scholar 

  33. Saciloto TR, Cervini P, Cavalheiro ÉTG (2013) Simultaneous voltammetric determination of acetaminophen and caffeine at a graphite and polyurethane screen-printed composite electrode. J Braz Chem Soc 24:1461–1468

    CAS  Google Scholar 

  34. Fernandes DM, Silva N, Pereira C, Moura C, Magalhães Júlia MCS, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A, Delerue-Matos C, Freire C (2015) MnFe2O4@CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid. Sensors Actuators B Chem 218:128–136

    Article  CAS  Google Scholar 

  35. Yang SL, Yang R, Li G, Qu LB, Li JJ, Yu LL (2010) Nafion/multi-wall carbon nanotubes composite film coated glassy carbon electrode for sensitive determination of caffeine. J Electroanal Chem 639:77–82

    Article  CAS  Google Scholar 

  36. Santos WJR, Santhiago M, Yoshida IVP, Kubota LT (2012) Electrochemical sensor based on imprinted sol-gel and nanomaterial for determination of caffeine. Sensors Actuators B Chem 166-167:739–745

    Article  CAS  Google Scholar 

  37. Yang YJ, Li WK (2015) High sensitive determination of theophylline based on manganese oxide nanoparticles/multiwalled carbon nanotube nanocomposite modified electrode. Ionics 21:1121–1128

    Article  CAS  Google Scholar 

  38. Sun WB, Hu JL (2013) Voltammetric determination of theophylline in pharmaceutical formulations using aligned carbon nanotubes (ACNTs) film modified electrode. J Anal Chem 68:694–699

    Article  CAS  Google Scholar 

  39. Yin HS, Meng XM, Su HC, Xu MR, Ai SY (2012) Electrochemical determination of theophylline in foodstuff, tea and soft drinks based on urchin-like CdSe microparticles modified glassy carbon electrode. Food Chem 134:1225–1230

    Article  CAS  PubMed  Google Scholar 

  40. Wang ZH, Li ZG, Zhou SP (2004) On the bit-error rate of product accumulate codes in optical fiber communications. Chin J Anal Chem 32:305–308

    CAS  Google Scholar 

  41. Gao YY, Wang H, Guo LP (2013) Simultaneous determination of theophylline and caffeine by large mesoporous carbon/Nafion modified electrode. J Electroanal Chem 706:7–12

    Article  CAS  Google Scholar 

  42. Yang GM, Zhao FQ, Zeng BZ (2014) Facile fabrication of a novel anisotropic gold nanoparticle–chitosan–ionic liquid/graphene modified electrode for the determination of theophylline and caffeine. Talanta 127:116–122

    Article  CAS  PubMed  Google Scholar 

  43. Wang YZ, Ding YP, Li L, Hu P (2018) Nitrogen-doped carbon nanotubes decorated poly (L-cysteine) as a novel, ultrasensitive electrochemical sensor for simultaneous determination of theophylline and caffeine. Talanta 178:449–457.42

    Article  CAS  PubMed  Google Scholar 

  44. Mekassa B, Tessema M, Chandravanshi BS (2017) Simultaneous determination of caffeine and theophylline using square wave voltammetry at poly (L-aspartic acid)/functionalized multi-walled carbon nanotubes composite modified electrode. Bio-Sens Res 16:46–54

    Google Scholar 

Download references

Funding

Authors are very grateful to the National Natural Science Foundation (21665024) and Key Lab of Polymer Materials of Gansu Province for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Guo or Wu Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Q., Guo, H., Xue, R. et al. Electrochemical sensing platform based on covalent organic framework materials and gold nanoparticles for high sensitivity determination of theophylline and caffeine. Microchim Acta 188, 85 (2021). https://doi.org/10.1007/s00604-021-04744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04744-x

Keywords

Navigation