Skip to main content
Log in

Design and evaluation of novel MOF–polymer core–shell composite as mixed-mode stationary phase for high performance liquid chromatography

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A general method was developed for preparing a metal–organic framework–polymer composite coated silica core–shell stationary phase. Silica microspheres were comodified with metal–organic framework and polyvinylpyrrolidone rather than the in situ method of silica modification by original metal–organic framework particles. Metal–organic framework particles and polyvinylpyrrolidone on silica surface were beneficial to suppress silanol activity and enhance composite material tolerance, as well as increasing the water compatibility of the original metal–organic framework-based stationary phases. The stationary phase exhibited superior hydrophilic and hydrophobic performance in terms of separation for various analytes including seven alkaloids, six sulfonamides, five antibiotics, and five polycyclic aromatic hydrocarbons. Moreover, the composite material also showed excellent stability with the relative standard deviation of the retention time of 0.4 to 0.7%. The separation performance with real samples proved that the column has good practical application potential. In summary, the poposed method provides a general way for preparing metal–organic framework–polymer composite material and changed the current status of original metal–organic framework particles modified silica as a single mode chromatographic stationary phase.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wang M, Guo L, Cao D (2018) Amino-functionalized luminescent metal-organic framework test paper for rapid and selective sensing of SO2 gas and its derivatives by luminescence turn-on effect. Anal Chem 90(5):3608–3614

    Article  CAS  Google Scholar 

  2. Chen B, Liang C, Yang J, Contreras DS, Clancy YL, Lobkovsky EB, Yaghi OM, Dai S (2006) A microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew Chem Int Ed Engl 45(9):1390–1393

    Article  CAS  Google Scholar 

  3. Amini S, Ebrahimzdeh H, Seidi S, Jalilian N (2020) Preparation of electrospun polyacrylonitrile/Ni-MOF-74 nanofibers for extraction of atenolol and captopril prior to HPLC-DAD. Mikrochim Acta 187(9):508

    Article  CAS  Google Scholar 

  4. Duo H, Li Y, Liang X, Wang S, Wang L, Guo Y (2020) Magnetic 3D hierarchical Ni/NiO@C nanorods derived from metal–organic frameworks for extraction of benzoylurea insecticides prior to HPLC-UV analysis. Mikrochim Acta 187(1):88

    Article  CAS  Google Scholar 

  5. Wang C, An B, Lin W (2018) Metal–organic frameworks in solid–gas phase catalysis. ACS Catal 9(1):130–146

    Article  CAS  Google Scholar 

  6. Steinruck HP, Wasserscheid P (2015) Ionic liquids in catalysis. Catal Lett 145(1):380–397

    Article  Google Scholar 

  7. Jiao Y, Hong W, Li P, Wang L, Chen G (2019) Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor. Appl Catal B Environ 244:732–739

    Article  CAS  Google Scholar 

  8. Bell DJ, Wiese M, Schonberger AA, Wessling M (2020) Catalytically active hollow fiber membranes with enzyme-embedded metal–organic framework coating. Angew Chem Int Ed Engl 59:16047–16053

    Article  CAS  Google Scholar 

  9. Hu A, Pang Q, Tang C, Bao J, Liu H, Ba K, Xie S, Chen J, Chen J, Yue Y, Tang Y, Li Q, Sun Z (2019) Epitaxial growth and integration of insulating metal–organic frameworks in electrochemistry. J Am Chem Soc 141(28):11322–11327

    Article  CAS  Google Scholar 

  10. Wang J, Zhao J, Yang J, Cheng J, Tan Y, Feng H, Li Y (2020) An electrochemical sensor based on MOF-derived NiO@ZnO hollow microspheres for isoniazid determination. Mikrochim Acta 187(7):380

    Article  CAS  Google Scholar 

  11. Qu C, Jiao Y, Zhao B, Chen D, Zou R, Walton KS, Liu M (2016) Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26:66–73

    Article  CAS  Google Scholar 

  12. Yang S, Peng L, Syzgantseva OA, Trukhina O, Kochetygov I, Justin A, Sun DT, Abedini H, Syzgantseva MA, Oveisi E, Lu G, Queen WL (2020) Preparation of highly porous metal–organic framework beads for metal extraction from liquid streams. J Am Chem Soc 142(31):13415–13425

    Article  CAS  Google Scholar 

  13. Yang CX, Yan XP (2011) Metal–organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics. Anal Chem 83(18):7144–7150

    Article  CAS  Google Scholar 

  14. Kuang X, Ma Y, Su H, Zhang J, Dong YB, Tang B (2014) High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework. Anal Chem 86(2):1277–1281

    Article  CAS  Google Scholar 

  15. Zhao WW, Zhang CY, Yan ZG, Bai LP, Wang XY, Huang HL, Zhou YY, Xie YB, Li FS, Li JR (2014) Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal- and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase. J Chromatogr A 1370:121–128

    Article  CAS  Google Scholar 

  16. Si T, Wang L, Lu X, Liang X, Wang S, Guo Y (2020) An alternative approach for the preparation of a core-shell bimetallic central metal–organic framework as a hydrophilic interaction liquid chromatography stationary phase. Analyst 145(11):3851–3856

    Article  CAS  Google Scholar 

  17. Qu Q, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Xu Q (2017) Core–shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation. J Chromatogr A 1505:63–68

    Article  CAS  Google Scholar 

  18. Li X, Li B, Liu M, Zhou Y, Zhang L, Qiao X (2019) Core–shell metal-organic frameworks as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase chromatography. ACS Appl Mater Interfaces 11(10):10320–10327

    Article  CAS  Google Scholar 

  19. Si T, Ma J, Lu X, Wang L, Liang X, Wang S (2020) Core–shell metal–organic frameworks as the stationary phase for hydrophilic interaction liquid chromatography. ACS Applied Nano Materials 3(1):351–356

    Article  CAS  Google Scholar 

  20. Si T, Liang X, Lu X, Wang L, Wang S, Guo Y (2021) 2D metal-organic framework nanosheets-assembled core–shell composite material as stationary phase for hydrophilic interaction liquid chromatography. Talanta 222:121603

    Article  CAS  Google Scholar 

  21. Fu YY, Yang CX, Yan XP (2013) Fabrication of ZIF-8@SiO2 core–shell microspheres as the stationary phase for high-performance liquid chromatography. Chemistry 19(40):13484–13491

    Article  CAS  Google Scholar 

  22. Wu X, Shao Y, Hu B, Wang J, Hou X (2020) Preparation and application of novel MIL-101(Cr) composite in liquid chromatographic separation of aromatic compounds: Experimental and computational insights. Mikrochim Acta 187(8):471

    Article  CAS  Google Scholar 

  23. Karmakar A, Mileo PGM, Bok I, Peh SB, Zhang J, Yuan H, Maurin G, Zhao D (2020) Thermo-responsive MOF/polymer composites for temperature-mediated water capture and release. Angew Chem Int Ed Engl 59(27):11003–11009

    Article  CAS  Google Scholar 

  24. Chen G, Huang S, Kou X, Zhu F, Ouyang G (2020) Embedding functional biomacromolecules within peptide-directed metal–organic framework (MOF) nanoarchitectures enables activity enhancement. Angew Chem Int Ed Engl 59(33):13947–13954

    Article  CAS  Google Scholar 

  25. Anbia M, Hoseini V, Sheykhi S (2012) Sorption of methane, hydrogen and carbon dioxide on metal–organic framework, iron terephthalate (MOF-235). J Ind Eng Chem 18(3):1149–1152

    Article  CAS  Google Scholar 

  26. Haque E, Jun JW, Jhung SH (2011) Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal–organic framework material, iron terephthalate (MOF-235). J Hazard Mater 185(1):507–511

    Article  CAS  Google Scholar 

  27. Si T, Lu X, Zhang H, Liang X, Wang S, Guo Y (2021) A new strategy for the preparation of core–shell MOF/polymer composite material as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase chromatography. Anal Chim Acta 1143:181–188

    Article  CAS  Google Scholar 

  28. Si T, Song X, Wang L, Guo Y, Liang X, Wang S (2020) Preparation and evaluation of hydrophobically associating polyacrylamide coated silica composite as high performance liquid chromatographic stationary phase. Microchem J 152:104330

    Article  CAS  Google Scholar 

  29. Arul P, John SA (2018) Size controlled synthesis of Ni-MOF using polyvinylpyrrolidone: new electrode material for the trace level determination of nitrobenzene. J Electroanal Chem 829:168–176

    Article  CAS  Google Scholar 

  30. Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA (2018) Chemometric-assisted method development in hydrophilic interaction liquid chromatography: a review. Anal Chim Acta 1000:20–40

    Article  CAS  Google Scholar 

  31. Hao Z, Xiao B, Weng N (2008) Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC). J Sep Sci 31(9):1449–1464

    Article  CAS  Google Scholar 

  32. Guo Y, Gaiki S (2011) Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J Chromatogr A 1218(35):5920–5938

    Article  CAS  Google Scholar 

  33. Qiao L, Lv W, Chang M, Shi X, Xu G (2018) Surface-bonded amide-functionalized imidazolium ionic liquid as stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A 1559:141–148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21575149, 21575148) and the State Key Scientific Special Project (2016ZX05011-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojing Liang or Yong Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 18.7 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, T., Wang, S., Zhang, H. et al. Design and evaluation of novel MOF–polymer core–shell composite as mixed-mode stationary phase for high performance liquid chromatography. Microchim Acta 188, 76 (2021). https://doi.org/10.1007/s00604-021-04738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04738-9

Keywords

Navigation