Skip to main content
Log in

Controllable preparation of ultrathin MXene nanosheets and their excellent QCM humidity sensing properties enhanced by fluoride doping

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A 2D ultrathin MXene nanosheet was prepared under controlled conditions and employed as a sensitive film to construct a QCM (quartz crystal microbalance) humidity sensor by a dip coating method. The MXene nanosheets were obtained by dislodging the element A from the MAX phase by a facile liquid phase etching method. The morphology and composition of the MXene nanosheets were characterized by means of a number of advanced instruments. It was found that the sample is an ultrathin graphene-like nanosheet. The sensing test results showed that the sensor has a 12.8 Hz/% RH sensitivity, 6 s and 2 s (@ 90%) response/recovery time, maximum humidity hysteresis of 1.16% RH, good stability, and selectivity. Finally, the enhanced humidity response mechanism of the MXene nanosheets was explored by density-functional theory (DFT) calculation and experimental verification. The DFT simulation together with comparison of fluoride-free sample revealed that F elements on the surface of the MXene nanosheets play a more important role in improving humidity responses than OH groups. The results present a new strategy to enhance humidity sensing performance of sensing materials by F doping or decoration. Thus, the sensor has bright potential for humidity sensing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xiong DB, Li XF, Bai ZM, Lu SG (2018) Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(1):e1703419. https://doi.org/10.1002/smll.201703419

    Article  CAS  PubMed  Google Scholar 

  2. Liu YT, Zhang P, Sun N, Anasori B, Zhu QZ, Liu H, Gogotsi Y, Xu B (2018) Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv Mater 30(23):e1707334. https://doi.org/10.1002/adma.201707334

    Article  CAS  PubMed  Google Scholar 

  3. Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew JW (2018) Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv Mater 30(12):e1704561. https://doi.org/10.1002/adma.201704561

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Zhang HB, Sun R, Liu Y, Liu Z, Zhou A, Yu ZZ (2017) Hydrophobic, flexible, and lightweight MXene foams for high-erformance electromagnetic interference shielding. Adv Mater 29(38). https://doi.org/10.1002/adma.201702367

  5. Hantanasirisakul K, Zhao MQ, Urbankowski P, Halim J, Anasori B, Kota S, Ren CE, Barsoum MW, Gogotsi Y (2016) Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater 2(1):1600050. https://doi.org/10.1002/aelm.201600050

    Article  CAS  Google Scholar 

  6. Lorencova L, Bertok T, Dosekova D, Holazova A, Paprckova D, Vikartovska A, Sasinkova V, Filip J, Kasak P, Jerigova M, Velic D, Mahmoud KA, Tkac J (2017) Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim Acta 10(235):471–479. https://doi.org/10.1021/acs.chemmater.6b01275

    Article  CAS  Google Scholar 

  7. An H, Habib T, Shah S, Gao H, Patel A, Echols I, Zhao X, Radovic M, Green MJ, Lutkenhaus JL (2019) Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl Nano Mater 2(2):948–955. https://doi.org/10.1021/acsanm.8b02265

    Article  CAS  Google Scholar 

  8. Li N, Jiang Y, Zhou C, Xiao Y, Meng B, Wang Z, Huang D, Xing C, Peng Z (2019) High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Appl Mater Interfaces 11(41):38116–38125. https://doi.org/10.1021/acsami.9b12168

    Article  CAS  PubMed  Google Scholar 

  9. Lv C, Hu C, Luo J, Liu S, Qiao Y, Zhang Z, Song J, Shi Y, Cai J, Watanabe A (2019) Recent advances in graphene-based humidity sensors. Nanomaterials 9(3). https://doi.org/10.3390/nano9030422

  10. Li N, Huang Q, Nie J, Meng X, Wang Z, Wu Y, Qi M, Liu Z, Mi B, Lin L (2019) Dew point measurements using montmorillonite (MTT) and molybdenum disulfide (MoS2) coated QCM sensors. Sensors Actuators B Chem 279:122–129. https://doi.org/10.1016/j.snb.2018.09.116

    Article  CAS  Google Scholar 

  11. Yao Y, Zhang H, Sun J, Ma W, Li L, Li W, Du J (2017) Novel QCM humidity sensors using stacked black phosphorus nanosheets as sensing film. Sensors Actuators B Chem 244:259–264. https://doi.org/10.1016/j.snb.2017.01.010

    Article  CAS  Google Scholar 

  12. Kuang Q, Lao C, Wang Z, Xie Z, Zheng L (2007) High-sensitivity humidity sensor based on a single SnO2 nanowire. J Am Chem Soc 129(19):6070–6071. https://doi.org/10.1021/ja070788m

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Yu K, Jiang D, Zhu Z, Geng H, Luo L (2005) Zinc oxide nanorod and nanowire for humidity sensor. Appl Surf Sci 242:212–217. https://doi.org/10.1016/j.apsusc.2004.08.013

    Article  CAS  Google Scholar 

  14. Kronenberg P, Rastogi PK, Giaccari P, Limberger HG (2002) Relative humidity sensor with optical fiber Bragg gratings. Opt Lett 27(16):1385–1387. https://doi.org/10.1364/Ol.27.001385

    Article  CAS  PubMed  Google Scholar 

  15. Zhu Y, Chen J, Li H, Zhu Y, Xu J (2014) Synthesis of mesoporous SnO2–SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sensors Actuators B Chem 193:320–325. https://doi.org/10.1016/j.snb.2013.11.091

    Article  CAS  Google Scholar 

  16. Yang L, Dall’Agnese Y, Hantanasirisakul K, Shuck CE, Maleski K, Alhabeb M, Chen G, Gao Y, Sanehira Y, Jena AK, Shen L, Dall’Agnese C, Wang X-F, Gogotsi Y, Miyasaka T (2019) SnO2–Ti3C2 MXene electron transport layers for perovskite solar cells. J Mater Chem A 7(10):5635–5642. https://doi.org/10.1039/c8ta12140k

    Article  CAS  Google Scholar 

  17. Zhang T, Pan L, Tang H, Du F, Guo Y, Qiu T, Yang J (2017) Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination. J Alloys Compd 695:818–826. https://doi.org/10.1016/j.jallcom.2016.10.127

    Article  CAS  Google Scholar 

  18. Juna BM, Kima S, Rhob H, Parkc CM, Yoon Y (2020) Ultrasound-assisted Ti3C2Tx MXene adsorption of dyes: removal performance and mechanism analyses via dynamic light scattering. Chemosphere 254:e126827. https://doi.org/10.1016/j.chemosphere.2020.126827

    Article  CAS  Google Scholar 

  19. Wang L, Chen L, Song P, Liang C, Lu Y, Qiu H, Zhang Y, Kong J, Gu J (2019) Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos Part B 171:111–118. https://doi.org/10.1016/j.compositesb.2019.04.050

    Article  CAS  Google Scholar 

  20. Fard AK, McKay G, Chamoun R, Rhadfi T, Preud’Homme H, Atieh MA (2017) Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem Eng J 317:331–342. https://doi.org/10.1016/j.cej.2017.02.090

    Article  CAS  Google Scholar 

  21. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29(18):7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  22. Cha X, Yu F, Fan Y, Chen J, Wang L, Xiang Q, Duan Z, Xu J (2018) Superhydrophilic ZnO nanoneedle array: controllable in situ growth on QCM transducer and enhanced humidity sensing properties and mechanism. Sensors Actuators B Chem 263:436–444. https://doi.org/10.1016/j.snb.2018.01.110

    Article  CAS  Google Scholar 

  23. Zhu Y, Yuan H, Xu J, Xu P, Pan Q (2010) Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with hexagonal lamelliform monodisperse mesoporous silica SBA-15 thin film. Sensors Actuators B Chem 144(1):164–169. https://doi.org/10.1016/j.snb.2009.10.053

    Article  CAS  Google Scholar 

  24. Muckley ES, Naguib M, Wang H-W, Vlcek L, Osti NC, Sacci RL, Sang X, Unocic RR, Xie Y, Tyagi M, Mamontov E, Page KL, Kent PRC, Nanda J, Ivanov IN (2017) Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano 11(11):11118–11126. https://doi.org/10.1021/acsnano.7b05264

    Article  CAS  PubMed  Google Scholar 

  25. Yao Y, Chen X, Guo H, Wu Z (2011) Graphene oxide thin film coated quartz crystal microbalance for humidity detection. Appl Surf Sci 257(17):7778–7782. https://doi.org/10.1016/j.apsusc.2011.04.028

    Article  CAS  Google Scholar 

  26. Yuan Z, Tai H, Ye Z, Liu C, Xie G, Du X, Jiang Y (2016) Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film. Sensors Actuators B Chem 234:145–154. https://doi.org/10.1016/j.snb.2016.04.070

    Article  CAS  Google Scholar 

  27. Yuan Z, Tai H, Bao X, Liu C, Ye Z, Jiang Y (2016) Enhanced humidity-sensing properties of novel graphene oxide/zinc oxide nanoparticles layered thin film QCM sensor. Mater Lett 174:28–31. https://doi.org/10.1016/j.matlet.2016.01.122

    Article  CAS  Google Scholar 

  28. Wang S, Xie G, Su Y, Su L, Zhang Q, Du H, Tai H, Jiang Y (2018) Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance. Sensors Actuators B Chem 255:2203–2210. https://doi.org/10.1016/j.snb.2017.09.028

    Article  CAS  Google Scholar 

  29. Ding X, Chen X, Chen X, Zhao X, Li N (2018) A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor. Sensors Actuators B Chem 266:534–542. https://doi.org/10.1016/j.snb.2018.03.143

    Article  CAS  Google Scholar 

  30. Li X, Chen X, Yao Y, Li N, Chen X, Xue B (2013) Multi-walled carbon nanotubes/graphene oxide composites for humidity sensing. IEEE Sensors J 13:4749–4755

    Article  CAS  Google Scholar 

  31. Ren X, Zhang D, Wang D, Li Z, Liu S (2018) Quartz crystal microbalance sensor for humidity sensing based on layer-by-layer self-assembled PDDAC/graphene oxide film. IEEE Sensors J 18(23):9471–9476. https://doi.org/10.1109/jsen.2018.2872854

    Article  CAS  Google Scholar 

  32. Fang H, Lin J, Hu Z, Liu H, Tang Z, Shi T, Liao G (2020) Cu(OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring. Sensors Actuators B Chem 304:127313. https://doi.org/10.1016/j.snb.2019.127313

    Article  CAS  Google Scholar 

  33. Zhang D, Wang D, Li P, Zhou X, Zong X, Dong G (2018) Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sensors Actuators B Chem 255:1869–1877. https://doi.org/10.1016/j.snb.2017.08.212

    Article  CAS  Google Scholar 

  34. Ho C-Y, Wu Y-S (2020) Diamine decorated graphene oxide film on quartz crystal microbalance for humidity-sensing analysis. Appl Surf Sci 510:145257. https://doi.org/10.1016/j.apsusc.2020.145257

    Article  CAS  Google Scholar 

  35. Qi P, Xu Z, Zhang T, Fei T, Wang R (2020) Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection. J Colloid Interface Sci 560:284–292. https://doi.org/10.1016/j.jcis.2019.10.080

    Article  CAS  PubMed  Google Scholar 

  36. Zhang D, Chen H, Zhou X, Wang D, Jin Y, Yu S (2019) In-situ polymerization of metal organic frameworks-derived ZnCo2O4/polypyrrole nanofilm on QCM electrodes for ultra-highly sensitive humidity sensing application. Sensors Actuators A Phys 295:687–695. https://doi.org/10.1016/j.sna.2019.06.050

    Article  CAS  Google Scholar 

  37. Zhang D, Wang D, Wang D, Wu Z (2019) Polypyrrole-modified tin disulfide nanoflower-based quartz crystal microbalance sensor for humidity sensing. IEEE Sensors J 19(20):9166–9171. https://doi.org/10.1109/jsen.2019.2926318

    Article  CAS  Google Scholar 

  38. Qi P, Zhang T, Shao J, Yang B, Fei T, Wang R (2019) A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sensors Actuators A Phys 287:93–101. https://doi.org/10.1016/j.sna.2019.01.009

    Article  CAS  Google Scholar 

  39. Zheng X, Fan R, Li C, Yang X, Li H, Lin J, Zhou X, Lv R (2019) A fast-response and highly linear humidity sensor based on quartz crystal microbalance. Sensors Actuators B Chem 283:659–665. https://doi.org/10.1016/j.snb.2018.12.081

    Article  CAS  Google Scholar 

  40. Gao N, Li H-Y, Zhang W, Zhang Y, Zeng Y, Zhixiang H, Liu J, Jiang J, Miao L, Yi F, Liu H (2019) QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires. Sensors Actuators B Chem 293:129–135. https://doi.org/10.1016/j.snb.2019.05.009

    Article  CAS  Google Scholar 

  41. Zhang D, Chen H, Li P, Wang D, Yang Z (2019) Humidity sensing properties of metal organic framework-derived hollow ball-like TiO2 coated QCM sensor. IEEE Sensors J 19(8):2909–2915. https://doi.org/10.1109/jsen.2018.2890738

    Article  CAS  Google Scholar 

  42. Lin J, Gao N, Liu J, Hu Z, Fang H, Tan X, Li H, Jiang H, Liu H, Shi T, Liao G (2019) Superhydrophilic Cu(OH)2 nanowire-based QCM transducer with self-healing ability for humidity detection. J Mater Chem A 7(15):9068–9077. https://doi.org/10.1039/c9ta01406c

    Article  CAS  Google Scholar 

  43. Zhang D, Wang D, Zong X, Dong G, Zhang Y (2018) High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method. Sensors Actuators B Chem 262:531–541. https://doi.org/10.1016/j.snb.2018.02.012

    Article  CAS  Google Scholar 

  44. Julian T, Rianjanu A, Hidayat SN, Kusumaatmaja A, Roto R, Triyana K (2019) Quartz crystal microbalance coated with PEDOT–PSS/PVA nanofiber for a high-performance humidity sensor. J Sens Sens Syst 8(2):243–250. https://doi.org/10.5194/jsss-8-243-2019

    Article  Google Scholar 

Download references

Funding

This work is supported by the Shanghai Committee of Science and Technology, China (No. 17010500500) and the National Natural Science Foundation of China (Grant 61371021). The authors also acknowledge the support of the Shanghai Municipal Education Commission (Peak Discipline Construction program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqiang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A stable colloidal solution containing ultrathin MXene nanosheets was obtained by a facile liquid phase etching method; it is beneficial for making the nanodevices.

• Different from the detection principle of resistance type humidity sensor at high temperature, we select QCM with ng sensing ability as a transducer to detect sensitively the mass change of water molecules adsorbed by MXene on QCM surface at room temperature.

• Humidity detection results indicated that the sensor had excellent sensitivity of 12.8 Hz/% RH, 6 s/2 s (@90%) rapid response/recovery time, maximum humidity hysteresis of 1.16% RH, excellent short-term repeatability, long-term stability, and cross-selectivity.

• DFT simulation reveals that F functional groups on the surface of MXene play an important role in enhancing water molecule adsorption, which was verified by relevant experiments.

Supplementary information

ESM 1

(DOCX 17.9 mb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Fan, Y., Ma, Z. et al. Controllable preparation of ultrathin MXene nanosheets and their excellent QCM humidity sensing properties enhanced by fluoride doping. Microchim Acta 188, 81 (2021). https://doi.org/10.1007/s00604-021-04723-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04723-2

Keywords

Navigation