Skip to main content

Advertisement

Log in

Determination of β-amyloid oligomer using electrochemiluminescent aptasensor with signal enhancement by AuNP/MOF nanocomposite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In order to effectively and conveniently detect the β-amyloid oligomer (AβO) for earlier diagnosis of Alzheimer’s disease (AD), a disposable aptamer biosensor has been developed with high performance, facile operation, and low cost. Using a nanocomposite by in situ reduction of chloroauric acid to decorate Au nanoparticles (AuNPs) on Fe-MIL-88NH2 material via Au–N bond to effectively enhance the electrochemiluminescence (ECL) of luminol, the functioned basal electrode provides adequate background for sensing response. When the aptamer is linked via Au–S bond on the surface, the sensor gets the ability of specific recognition and coalescence toward the target (AβO). After incubating the sample on the aptasensor, its ECL signal is inhibited owing to the steric hindrance of the AβO macromolecules. The relative inhibition ratio linearly depends to the logarithm of AβO concentration in the range 0.1 pM to 10 pM, with an LOD of 71 fM. The aptasensor has high selectivity to AβO among its analogs. The recoveries in human serum were 98.9–105.4%. This research provides a new approach for sensitive detection of AβO in clinic laboratories for investigation and diagnosis of AD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu H, Zhou P, Alcauter S, Chen Y, Cao H, Tian M, Ming D, Qi H, Wang X, Zhao X, He F, Ni H, Gao W (2016) Changes of intranetwork and internetwork functional connectivity in Alzheimer’s disease and mild cognitive impairment. J Neural Eng 13(4):046008. https://doi.org/10.1088/1741-2560/13/4/046008

    Article  PubMed  Google Scholar 

  2. Vaz M, Silvestre S (2020) Alzheimer’s disease: recent treatment strategies. Eur J Pharmacol 887:173554. https://doi.org/10.1016/j.ejphar.2020.173554

    Article  CAS  PubMed  Google Scholar 

  3. Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68(3):209–245. https://doi.org/10.1016/S0301-0082(02)00079-5

    Article  CAS  PubMed  Google Scholar 

  4. Klaver AC, Coffey MP, Smith LM, Bennett DA, Finke JM, Dang L, Loeffler DA (2011) ELISA measurement of specific non-antigen-bound antibodies to Aβ1-42 monomer and soluble oligomers in sera from Alzheimer’s disease, mild cognitively impaired, and noncognitively impaired subjects. J Neuroinflammation 8(1):93. https://doi.org/10.1186/1742-2094-8-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao G, Wang Y, Li X, Yue Q, Dong X, Du B, Cao W, Wei Q (2019) Dual-quenching electrochemiluminescence strategy based on three-dimensional metal–organic frameworks for ultrasensitive detection of amyloid-β. Anal Chem 91(3):1989–1996. https://doi.org/10.1021/acs.analchem.8b04332

    Article  CAS  PubMed  Google Scholar 

  6. Deng C, Liu H, Si S, Zhu X, Tu Q, Jin Y, Xiang J (2020) An electrochemical aptasensor for amyloid-β oligomer based on double-stranded DNA as “conductive spring”. Microchim Acta 187(4):239. https://doi.org/10.1007/s00604-020-4217-8

  7. Xia N, Liu L, Harrington MG, Wang J, Zhou F (2010) Regenerable and simultaneous surface plasmon resonance detection of Aβ(1−40) and Aβ(1−42) peptides in cerebrospinal fluids with signal amplification by streptavidin conjugated to an N-terminus-specific antibody. Anal Chem 82(24):10151-10157. https://doi.org/10.1021/ac102257m

  8. Liu L, Chang Y, Yu J, Jiang M, Xia N (2017) Two-in-one polydopamine nanospheres for fluorescent determination of beta-amyloid oligomers and inhibition of beta-amyloid aggregation. Sensors Actuators B: Chem 251:359-365. https://doi.org/10.1016/j.snb.2017.05.106

  9. Negahdary M, Heli H (2019) An ultrasensitive electrochemical aptasensor for early diagnosis of Alzheimer’s disease, using a fern leaves-like gold nanostructure. Talanta 198:510-517. https://doi.org/10.1016/j.talanta.2019.01.109

  10. Zhu L, Zhang J, Wang F, Wang Y, Lu L, Feng C, Xu Z, Zhang W (2016) Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification. Biosensors and Bioelectronics 78:206-212. https://doi.org/10.1016/j.bios.2015.11.048

  11. Zhou J, Meng L, Ye W, Wang Q, Geng S, Sun C (2018) A sensitive detection assay based on signal amplification technology for Alzheimer’s disease’s early biomarker in exosome. Anal Chim Acta 1022:124-130. https://doi.org/10.1016/j.aca.2018.03.016

  12. Zhou Y, Zhang H, Liu L, Li C, Chang Z, Zhu X, Ye B, Xu M (2016) Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Sci Rep 6(1):35186. https://doi.org/10.1038/srep35186

  13. Jiang L-F, Chen B-C, Chen B, Li X-J, Liao H-L, Huang H-M, Guo Z-J, Zhang W-Y, Wu L (2017) Detection of Aβ oligomers based on magnetic-field-assisted separation of aptamer-functionalized Fe3O4 magnetic nanoparticles and BaYF5:Yb,Er nanoparticles as upconversion fluorescence labels. Talanta 170:350–357. https://doi.org/10.1016/j.talanta.2017.04.021

    Article  CAS  PubMed  Google Scholar 

  14. Tsukakoshi K, Abe K, Sode K, Ikebukuro K (2012) Selection of DNA aptamers that recognize α-synuclein oligomers using a competitive screening method. Anal Chem 84:5542–5547. https://doi.org/10.1021/ac300330g

    Article  CAS  PubMed  Google Scholar 

  15. Toh SY, Citartan M, Gopinath SCB, Tang T-H (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403. https://doi.org/10.1016/j.bios.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Guo S, Wang E (2012) Recent advances in new luminescent nanomaterials for electrochemiluminescence sensors. RSC Adv 2(9):3579-3586. https://doi.org/10.1039/C2RA01070D

  17. Liu YL, Zhao XJ, Yang XX, Li YF (2013) A nanosized metal–organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst 138(16):4526–4531. https://doi.org/10.1039/C3AN00560G

  18. Sun Z, Liu Y, Li Y (2015) Selective recognition of 6-mercaptopurine based on luminescent metal–organic frameworks Fe-MIL-88NH2. Spectrochim Acta A Mol Biomol Spectrosc 139:296–301. https://doi.org/10.1016/j.saa.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  19. Hu M, Wang Y, Yang J, Sun Y, Xing G, Deng R, Hu X, Zhang G (2019) Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH2/AuPt. Biosens Bioelectron 142:111554. https://doi.org/10.1016/j.bios.2019.111554

    Article  CAS  PubMed  Google Scholar 

  20. Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73(1):3–14. https://doi.org/10.1016/j.micromeso.2004.03.034

    Article  CAS  Google Scholar 

  21. Ke F, Qiu L-G, Zhu J (2014) Fe3O4@MOF core–shell magnetic microspheres as excellent catalysts for the Claisen–Schmidt condensation reaction. Nanoscale 6(3):1596–1601. https://doi.org/10.1039/C3NR05051C

    Article  CAS  PubMed  Google Scholar 

  22. Zhao S, Zhang Y, Ding S, Fan J, Luo Z, Liu K, Shi Q, Liu W, Zang G (2019) A highly sensitive label-free electrochemical immunosensor based on AuNPs-PtNPs-MOFs for nuclear matrix protein 22 analysis in urine sample. J Electroanal Chem 834:33–42. https://doi.org/10.1016/j.jelechem.2018.12.044

    Article  CAS  Google Scholar 

  23. Liu L, Zhou Y, Liu S, Xu M (2018) The applications of metal−organic frameworks in electrochemical sensors. ChemElectroChem 5(1):6–19. https://doi.org/10.1002/celc.201700931

    Article  CAS  Google Scholar 

  24. Li Y, Yu C, Yang B, Liu Z, Xia P, Wang Q (2018) Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum. Biosens Bioelectron 102:307–315. https://doi.org/10.1016/j.bios.2017.11.047

    Article  CAS  PubMed  Google Scholar 

  25. Xie S, Ye J, Yuan Y, Chai Y, Yuan R (2015) A multifunctional hemin@metal–organic framework and its application to construct an electrochemical aptasensor for thrombin detection. Nanoscale 7(43):18232-18238. https://doi.org/10.1039/C5NR04532K

  26. Cheng S, Liu H, Zhang H, Chu G, Guo Y, Sun X (2020) Ultrasensitive electrochemiluminescence aptasensor for kanamycin detection based on silver nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. Sensors Actuators B Chem 304:127367. https://doi.org/10.1016/j.snb.2019.127367

    Article  CAS  Google Scholar 

  27. Chen F, Wang D, Chen J, Ling J, Yue H, Gou L, Tang H (2020) PtNi nanocubes-catalyzed tyramine signal amplification electrochemiluminescence sensor for nonenzymatic and ultrasensitive detection of hepatocellular carcinoma cells. Sensors Actuators B Chem 305:127472. https://doi.org/10.1016/j.snb.2019.127472

    Article  CAS  Google Scholar 

  28. Chen Y, Zhou S, Li L, Zhu J-j (2017) Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today 12:98–115. https://doi.org/10.1016/j.nantod.2016.12.013

    Article  CAS  Google Scholar 

  29. Zhang Y, Wei Q (2016) The role of nanomaterials in electroanalytical biosensors: a mini review. J Electroanal Chem 781:401–409. https://doi.org/10.1016/j.jelechem.2016.09.011

    Article  CAS  Google Scholar 

  30. Liu YL, Fu WL, Li CM, Huang CZ, Li YF (2015) Gold nanoparticles immobilized on metal–organic frameworks with enhanced catalytic performance for DNA detection. Anal Chim Acta 861:55–61. https://doi.org/10.1016/j.aca.2014.12.032

    Article  CAS  PubMed  Google Scholar 

  31. Xie S, Ye J, Yuan Y, Yaqin C, Yuan R (2015) A multifunctional hemin@metal-organic framework and its application to construct an electrochemical aptasensor for thrombin detection. Nanoscale 7:18232–18238. https://doi.org/10.1039/c5nr04532k

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Zhai S, Liu C, Wang X, Yang Y, Tu Y (2019) A convenient electrochemiluminescent immunosensor for detecting methamphetamine antibody. Anal Sci 35(8):875-882. https://doi.org/10.2116/analsci.19P051

  33. Tsukakoshi K, Abe K, Sode K, Ikebukuro K (2012) Selection of DNA aptamers that recognize α-synuclein oligomers using a competitive screening method. Anal Chem 84(13):5542-5547. https://doi.org/10.1021/ac300330g

  34. Kasai T, Tokuda T, Taylor M, Kondo M, Mann DMA, Foulds PG, Nakagawa M, Allsop D (2013) Correlation of Aβ oligomer levels in matched cerebrospinal fluid and serum samples. Neurosci Lett 551:17-22. https://doi.org/10.1016/j.neulet.2013.06.029

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (21675115, 21375091).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiling Li or Yifeng Tu.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Protocol number: 2019(264), the First Affiliated Hospital of Soochow University.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 976 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Wang, Y., Tan, R. et al. Determination of β-amyloid oligomer using electrochemiluminescent aptasensor with signal enhancement by AuNP/MOF nanocomposite. Microchim Acta 188, 53 (2021). https://doi.org/10.1007/s00604-021-04710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04710-7

Keywords

Navigation