Determination of acetamiprid using electrochemiluminescent aptasensor modified by MoS2QDs-PATP/PTCA and NH2-UiO-66

Abstract

A novel aptasensor has been fabricated based on the resonance energy transform (RET) system from MoS2QDs-PATP/PTCA (donor) to NH2-UiO-66 (acceptor). The electrochemiluminescence (ECL) signal of PTCA was greatly amplified due to the decoration of MoS2QDs-PATP, and the NH2-UiO-66 was utilized to label the signal probe DNA (pDNA), which hybridizes with the exposed aptamer anchored on the surface of MoS2QDs-PATP/PTCA. With the target acetamiprid, the specific binding of acetamiprid to aptamer causes the connection between the donor and the acceptor to be interrupted and produce an “on” ECL signal. Thus, an “off-on” ECL sensing platform for sensitive and selective acetamiprid assay was designed. Under the optimal condition, the ECL signal of the aptasensor was found to be linearly related to the logarithm of the acetamiprid concentration ranging from 0.1 fM to 0.1 μM with a detection limit of 0.064 fM. More importantly, the recovery rate of the ECL aptasensor was calculated to be 98.7 ~ 106% with a RSD lower 5.1% for the residual acetamiprid assay in real food samples, which indicated that the aptasensor has high potential for practical applications.

Graphical abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Liu Q, Huan J, Dong X, Qian J, Hao N, You T, Mao H, Wang K (2016) Resonance energy transfer from CdTe quantum dots to gold nanorods using MWCNTs/rGO nanoribbons as efficient signal amplifier for fabricating visible-light-driven “on-off-on” photoelectrochemical acetamiprid aptasensor. Sensors Actuators B Chem 235:647–654. https://doi.org/10.1016/j.snb.2016.05.154

    CAS  Article  Google Scholar 

  2. 2.

    Yi J, Liu Z, Liu J, Liu H, Xia F, Tian D, Zhou C (2020) A label-free electrochemical aptasensor based on 3D porous CS/rGO/GCE for acetamiprid residue detection. Biosens Bioelectron 148:111827. https://doi.org/10.1016/j.bios.2019.111827

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Wanatabe S, Ito S, Kamata Y, Omoda N, Yamazaki T, Munakata H, Kaneko T, Yuasa Y (2001) Development of competitive enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antibodies for chloronicotinoid insecticides imidacloprid and acetamiprid. Anal Chim Acta 427(2):211–219. https://doi.org/10.1016/j.jhazmat.2020.123794

    CAS  Article  Google Scholar 

  4. 4.

    López-García M, Romero-González R, Lacasaña M, Garrido Frenich A (2017) Semiautomated determination of neonicotinoids and characteristic metabolite in urine samples using TurboFlow™ coupled to ultra high performance liquid chromatography coupled to Orbitrap analyzer. J Pharm Biomed Anal 146:378–386. https://doi.org/10.1016/j.jpba.2017.08.026

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Faraji M, Noorbakhsh R, Shafieyan H, Ramezani M (2018) Determination of acetamiprid, imidacloprid, and spirotetramat and their relevant metabolites in pistachio using modified QuEChERS combined with liquid chromatography-tandem mass spectrometry. Food Chem 240:634–641. https://doi.org/10.1016/j.foodchem.2017.08.012

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Hu W, Chen Q, Li H, Ouyang Q, Zhao J (2016) Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, Ho@SiO2 and Au nanoparticles. Biosens Bioelectron 80:398–404. https://doi.org/10.1016/j.bios.2016.02.001

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Qi Y, Chen Y, Xiu F-R, Hou J (2020) An aptamer-based colorimetric sensing of acetamiprid in environmental samples: convenience, sensitivity and practicability. Sensors Actuators B Chem 304:127359. https://doi.org/10.1016/j.snb.2019.127359

    CAS  Article  Google Scholar 

  8. 8.

    Wei W, Huang Q (2018) Preparation of cellophane-based substrate and its SERS performance on the detection of CV and acetamiprid. Spectrochim Acta Part A 193:8–13. https://doi.org/10.1016/j.saa.2017.11.062

    CAS  Article  Google Scholar 

  9. 9.

    Qiao X, Xia F, Tian D, Chen P, Liu J, Gu J, Zhou C (2019) Ultrasensitive “signal-on” electrochemical aptasensor for assay of acetamiprid residues based on copper-centered metal-organic frameworks. Anal Chim Acta 1050:51–59. https://doi.org/10.1016/j.aca.2018.11.004

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Mateu S, Aacute NM, Moreno M, Arrebola FJ, Mart I, Nez Vidal J, Eacute L (2003) Analysis of acetamiprid in vegetables using gas chromatography-tandem mass spectrometry. Anal Sci 19(5):701–704. https://doi.org/10.2116/analsci.19.701

    Article  Google Scholar 

  11. 11.

    Freeman R, Liu X, Willner I (2011) Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer–substrate complexes using Hemin/G-Quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133(30):11597–11604. https://doi.org/10.1021/ja202639m

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Li J, Jiang D, Shan X, Wang W, Chen Z (2020) An “off-on” electrochemiluminescence aptasensor for microcystin-LR assay based on the resonance energy transfer from PTCA/NH2-MIL-125(Ti) to gold nanoparticles. Microchim Acta 187(8):474. https://doi.org/10.1007/s00604-020-04453-x

    CAS  Article  Google Scholar 

  13. 13.

    Aswathi R, Sandhya KY (2018) Ultrasensitive and selective electrochemical sensing of Hg(ii) ions in normal and sea water using solvent exfoliated MoS2: affinity matters. J Mater Chem 6(30):14602–14613. https://doi.org/10.1039/C8TA00476E

    CAS  Article  Google Scholar 

  14. 14.

    Li J, Shan X, Jiang D, Wang Y, Wang W, Chen Z (2020) A novel electrochemiluminescence sensor based on resonance energy transfer from MoS2QDs@g-C3N4 to NH2-SiO2@PTCA for glutathione assay. Analyst 145:7616–7622. https://doi.org/10.1039/D0AN01542C

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Verdian A (2018) Apta-nanosensors for detection and quantitative determination of acetamiprid - a pesticide residue in food and environment. Talanta 176:456–464. https://doi.org/10.1016/j.talanta.2017.08.070

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Lan L, Yao Y, Ping J, Ying Y (2017) Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants. ACS Appl Mater Interfaces 9(28):23287–23301. https://doi.org/10.1021/acsami.7b03937

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Zango ZU, Ramli A, Jumbri K, Sambudi NS, Isiyaka HA, Abu Bakar NHH, Saad B (2020) Optimization studies and artificial neural network modeling for pyrene adsorption onto UiO-66(Zr) and NH2-UiO-66(Zr) metal organic frameworks. Polyhedron 192:114857. https://doi.org/10.1016/j.poly.2020.114857

    CAS  Article  Google Scholar 

  18. 18.

    Fidente P, Seccia S, Vanni F, Morrica P (2005) Analysis of nicotinoid insecticides residues in honey by solid matrix partition clean-up and liquid chromatography–electrospray mass spectrometry. J Chromatogr A 1094(1):175–178. https://doi.org/10.1016/j.chroma.2005.09.012

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wang Y, Ni Y (2014) Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2, 4, 6-trinitrophenol detection. Anal Chem 86(15):7463–7470. https://doi.org/10.1021/ac5012014

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ran Q, Yu Z, Jiang R, Qian L, Hou Y, Yang F, Li F, Li M, Sun Q, Zhang H (2020) Path of electron transfer created in S-doped NH2-UiO-66 bridged ZnIn2S4/MoS2 nanosheet heterostructure for boosting photocatalytic hydrogen evolution. Catal Sci Technol 10(8):2531–2539. https://doi.org/10.1039/d0cy00127a

    CAS  Article  Google Scholar 

  21. 21.

    Li J, Shan X, Jiang D, Chen Z (2020) An ultrasensitive electrochemiluminescence aptasensor for the detection of diethylstilbestrol based on the enhancing mechanism of the metal–organic framework NH2-MIL-125(Ti) in a 3, 4, 9, 10-perylenetetracarboxylic acid/K2S2O8 system. Analyst 145(9):3306–3312. https://doi.org/10.1039/D0AN00212G

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Wang X, Yang G, Chai G, Nasir MS, Wang S, Zheng X, Wang C, Yan W (2020) Fabrication of heterostructured UiO-66-NH2/CNTs with enhanced activity and selectivity over photocatalytic CO2 reduction. Int J Hydrog Energy 45(55):30634–30646. https://doi.org/10.1016/j.ijhydene.2020.08.273

    CAS  Article  Google Scholar 

  23. 23.

    Wang Z, Feng Y, Wang N, Cheng Y, Quan Y, Ju H (2018) Donor-acceptor conjugated polymer dots for tunable electrochemiluminescence activated by aggregation-induced emission-active moieties. J Phys Chem Lett 9(18):5296–5302. https://doi.org/10.1021/acs.jpclett.8b02087

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Peng H, Huang Z, Wu W, Liu M, Huang K, Yang Y, Deng H, Xia X, Chen W (2019) Versatile high-performance electrochemiluminescence ELISA platform based on a gold nanocluster probe. ACS Appl Mater Interfaces 11(27):24812–24819. https://doi.org/10.1021/acsami.9b08819

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Liu J, Chen P, Xia F, Liu Z, Liu H, Yi J, Zhou C (2020) Sensitive electrochemiluminescence aptasensor for chlorpyrifos detection based on resonance energy transfer between MoS2/CdS nanospheres and Ag/CQDs. Sensors Actuators B Chem 315:128098. https://doi.org/10.1016/j.snb.2020.128098

    CAS  Article  Google Scholar 

  26. 26.

    Abnous K, Danesh NM, Ramezani M, Alibolandi M, Lavaee P, Taghdisi SM (2017) Aptamer based fluorometric acetamiprid assay using three kinds of nanoparticles for powerful signal amplification. Microchim Acta 184(1):81–90. https://doi.org/10.1007/s00604-016-1992-3

    CAS  Article  Google Scholar 

  27. 27.

    Jiang D, Du X, Zhou L, Li H, Wang K (2017) New insights toward efficient charge-separation mechanism for high-performance photoelectrochemical aptasensing: enhanced charge-carrier lifetime via coupling ultrathin MoS2 nanoplates with nitrogen-doped graphene quantum dots. Anal Chem 89(8):4525–4531. https://doi.org/10.1021/acs.analchem.6b04949

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Fei A, Liu Q, Huan J, Qian J, Dong X, Qiu B, Mao H, Wang K (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129. https://doi.org/10.1016/j.bios.2015.03.028

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Jiang D, Du X, Liu Q, Zhou L, Dai L, Qian J, Wang K (2015) Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 140(18):6404–6411. https://doi.org/10.1039/C5AN01084E

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Taghdisi SM, Danesh NM, Ramezani M, Abnous K (2017) Electrochemical aptamer based assay for the neonicotinoid insecticide acetamiprid based on the use of an unmodified gold electrode. Microchim Acta 184(2):499–505. https://doi.org/10.1007/s00604-016-2038-6

    CAS  Article  Google Scholar 

  31. 31.

    Qi Y, Xiu F-R, Zheng M, Li B (2016) A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: sensitivity, selectivity and mechanism. Biosens Bioelectron 83:243–249. https://doi.org/10.1016/j.bios.2016.04.074

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Guo Y, Yang F, Yao Y, Li J, Cheng S, Dong H, Zhang H, Xiang Y, Sun X (2021) Novel Au-tetrahedral aptamer nanostructure for the electrochemiluminescence detection of acetamiprid. J Hazard Mater 401:123794. https://doi.org/10.1016/j.jhazmat.2020.123794

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Xu Y, Zhang W, Shi J, Li Z, Huang X, Zou X, Tan W, Zhang X, Hu X, Wang X, Liu C (2020) Impedimetric aptasensor based on highly porous gold for sensitive detection of acetamiprid in fruits and vegetables. Food Chem 322:126762. https://doi.org/10.1016/j.foodchem.2020.126762

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Shi X, Sun J, Yao Y, Liu H, Huang J, Guo Y, Sun X (2020) Novel electrochemical aptasensor with dual signal amplification strategy for detection of acetamiprid. Sci Total Environ 705:135905. https://doi.org/10.1016/j.scitotenv.2019.135905

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Nana L, Ruiyi L, Xiulan S, Yongqiang Y, Zaijun L (2020) Dual amplification in a fluorometric acetamiprid assay by using an aptamer, G-quadruplex/hemin DNAzyme, and graphene quantum dots functionalized with D-penicillamine and histidine. Microchim Acta 187(3):158. https://doi.org/10.1007/s00604-020-4127-9

    CAS  Article  Google Scholar 

  36. 36.

    Yang L, Sun H, Wang X, Yao W, Zhang W, Jiang L (2019) An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles. Microchim Acta 186(5):308. https://doi.org/10.1007/s00604-019-3422-9

    CAS  Article  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Jiangsu Province (BK20190928), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB150003), the National Natural Science Foundation of China (51874050, 21904014), the Foundation of Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110), and the Foundation of the Science and Technology Bureau of Changzhou province (CQ20204033).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhidong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

The following is the Supplementary data to this article:

ESM 1

(DOCX 3230 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Jiang, D., Shan, X. et al. Determination of acetamiprid using electrochemiluminescent aptasensor modified by MoS2QDs-PATP/PTCA and NH2-UiO-66. Microchim Acta 188, 44 (2021). https://doi.org/10.1007/s00604-021-04706-3

Download citation

Keywords

  • Resonance energy transfer
  • Electrochemiluminescence aptasensor
  • Acetamiprid
  • MoS2QDs-PATP/PTCA
  • NH2-UiO-66