Abstract
Surface-enhanced Raman spectroscopy (SERS) is gaining importance as an ultrasensitive analytical tool for routine high-throughput analysis of a variety of molecular compounds. One of the main challenges is the development of robust, reproducible and cost-effective SERS substrates. In this work, we study the SERS activity of 3D silver mirror–like micro-pyramid structures extended in the z-direction up to 3.7 μm (G0 type substrate) or 7.7 μm (G1 type substrate), prepared by Si-based microfabrication technologies, for trace detection of organophosphorous pesticides, using paraoxon-methyl as probe molecule. The average relative standard deviation (RSD) for the SERS intensity of the peak displayed at 1338 cm−1 recorded over a centimetre scale area of the substrate is below 13% for pesticide concentrations in the range 10−6 to 10−15 mol L−1. This data underlies the spatial uniformity of the SERS response provided by the microfabrication approach. According to finite-difference time-domain (FDTD) simulations, such remarkable feature is mainly due to the contribution on electromagnetic field enhancement of edge plasmon polaritons (EPPs), propagating along the pyramid edges where the pesticide molecules are preferentially adsorbed.

Graphical abstract
This is a preview of subscription content,
to check access.





Similar content being viewed by others

Change history
28 December 2022
This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1007/s00604-022-05620-y
References
European Environment Agency. https://www.eea.europa.eu/airs/2018/environment-and-health/pesticides-sales. Accessed 20 Sep 2018
Agri-environmental indicators. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicators. Accessed 20 Sep 2019
World Health Organization (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum, Geneva
Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Pol 9:685–692. https://doi.org/10.1016/j.envsci.2006.08.002
Hernández F, Sancho JV, Pozo OJ (2005) Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples. Anal Bioanal Chem 382:934–946. https://doi.org/10.1007/s00216-005-3185-5
Aulakh JS, Malik AK, Kaur V, Schmitt-Kopplin P (2005) A review on solid phase micro extraction - high performance liquid chromatography (SPME-HPLC) analysis of pesticides. Crit Rev Anal Chem 35:71–85. https://doi.org/10.1080/10408340590947952
Sherma J (2015) Review of advances in the thin layer chromatography of pesticides: 2012–2014. J Environ Sci Health B 50:301–316. https://doi.org/10.1080/03601234.2015.1000163
Pang S, Yang T, He L (2016) Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC - Trends Anal Chem 85:73–82. https://doi.org/10.1016/j.trac.2016.06.017
Jiang Y, Sun DW, Pu H, Wei Q (2018) Surface enhanced Raman spectroscopy (SERS): a novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci Technol 75:10–22. https://doi.org/10.1016/j.tifs.2018.02.020
Wang R, Xu Y, Wang R, Wang C, Zhao H, Zheng X, Liao X, Cheng L (2017) A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine. Microchim Acta 184:279–287. https://doi.org/10.1007/s00604-016-1990-5
Ren X, Cheshari EC, Qi J, Li X (2018) Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A. Microchim Acta 185:185–188. https://doi.org/10.1007/s00604-018-2772-z
Jiang J, Ma L, Chen J, Zhang P, Wu H, Zhang Z, Wang S, Yun W, Li Y, Jia J, Liao J (2017) SERS detection and characterization of uranyl ion sorption on silver nanorods wrapped with Al2O3 layers. Microchim Acta 184:2775–2782. https://doi.org/10.1007/s00604-017-2286-0
Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626. https://doi.org/10.1146/annurev.anchem.1.031207.112814
Langer J, Jimenez de Aberasturi D, Aizpurua J et al (2019) Present and future of surface-enhanced Raman scattering. ACS Nano. https://doi.org/10.1021/acsnano.9b04224
Mosier-Boss P (2017) Review of SERS substrates for chemical sensing. Nanomaterials 7:142. https://doi.org/10.3390/nano7060142
Fan M, Andrade GFS, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25. https://doi.org/10.1016/j.aca.2011.03.002
Cardinal MF, Vander Ende E, Hackler RA, McAnally M, Stair PC, Schatz GC, van Duyne R (2017) Expanding applications of SERS through versatile nanomaterials engineering. Chem Soc Rev 46:3886–3903. https://doi.org/10.1039/c7cs00207f
Lafuente M, Berenschot EJW, Tiggelaar RM et al (2018) 3D fractals as SERS active platforms: preparation and evaluation for gas phase detection of G-nerve agents. Micromachines 9. https://doi.org/10.3390/mi9020060
Berenschot EJW, Jansen HV, Tas NR (2013) Fabrication of 3D fractal structures using nanoscale anisotropic etching of single crystalline silicon. J Micromech Microeng 23. https://doi.org/10.1088/0960-1317/23/5/055024
Le Ru EC, Blackie E, Meyer M, Etchegoint PG (2007) Surface enhanced raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803. https://doi.org/10.1021/jp0687908
Rodrigo SG (2012) Optical properties of nanostructured metallic systems. Springer Science & Business Media
Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2008) Influence of material properties on extraordinary optical transmission through hole arrays. Phys Rev B - Condens Matter Mater Phys 77:1–8. https://doi.org/10.1103/PhysRevB.77.075401
Fathi F, Lagugné-Labarthet F, Pedersen DB, Kraatz HB (2012) Studies of the interaction of two organophosphonates with nanostructured silver surfaces. Analyst 137:4448–4453. https://doi.org/10.1039/c2an35641d
El Alami A, Lagarde F, Tamer U et al (2016) Enhanced Raman spectroscopy coupled to chemometrics for identification and quantification of acetylcholinesterase inhibitors. Vib Spectrosc 87:27–33. https://doi.org/10.1016/j.vibspec.2016.09.005
Ma B, Li P, Yang L, Liu J (2015) Based on time and spatial-resolved SERS mapping strategies for detection of pesticides. Talanta 141:1–7. https://doi.org/10.1016/j.talanta.2015.03.053
Li P, Dong R, Wu Y, Liu H, Kong L, Yang L (2014) Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides. Talanta 127:269–275. https://doi.org/10.1016/j.talanta.2014.03.075
Wang B, Zhang L, Zhou X (2014) Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram. Spectrochim Acta A Mol Biomol Spectrosc 121:63–69. https://doi.org/10.1016/j.saa.2013.10.013
Jiang Y, Wang J, Malfatti L et al (2018) Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection. Appl Surf Sci 450:451–460. https://doi.org/10.1016/j.apsusc.2018.04.218
Scalora M, Vincenti MA, de Ceglia D et al (2012) Raman scattering near metal nanostructures. J Opt Soc Am B 29:2035. https://doi.org/10.1364/josab.29.002035
Moreno E, Garcia-Vidal F, Rodrigo SG, Martin-Moreno L (2009) Fundamentals of channel and wedge plasmon polaritons. In: Plasmonics: nanoguides and circuits. Pan Stanford Publishing, Singapore, pp 253–272
Yaakobi K, Liebes-Peer Y, Kushmaro A, Rapaport H (2013) Designed amphiphilic β-sheet peptides as templates for paraoxon adsorption and detection. Langmuir 29:6840–6848. https://doi.org/10.1021/la401280e
Acknowledgements
The microscopy images have been recorded in the Laboratorio de Microscopias Avanzadas at Instituto de Nanociencia de Aragon-Universidad de Zaragoza (LMA-INA). Authors acknowledge the LMA-INA for offering access to their instruments and expertise.
Funding
The authors received financial support from MICINN (CTQ2013-49068-C2-1-R, CTQ2016-79419-R and MAT2017-88358-C3-2-R), Gobierno de Aragón (T57-17R p) and Feder 2014-2020 ‘Construyendo Europa desde Aragón’.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on IX NyNA 2019. International Congress on Analytical Nanoscience and Nanotechnology
This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s00604-022-05620-y
Electronic supplementary material
ESM 1
(DOCX 1261 kb).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lafuente, M., Berenschot, E.J.W., Tiggelaar, R.M. et al. RETRACTED ARTICLE: Attomolar SERS detection of organophosphorous pesticides using silver mirror–like micro-pyramids as active substrate. Microchim Acta 187, 247 (2020). https://doi.org/10.1007/s00604-020-4216-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00604-020-4216-9