Lanthanum cobaltite supported on graphene nanosheets for non-enzymatic electrochemical determination of catechol


An electrochemical sensor is described for the determination of catechol (CT) based on the nanocomposite of lanthanum cobaltite supported on graphene nanosheets (LaCo/GNS). The nanocomposite was systematically examined by various analytical and spectroscopic methods. The LaCo/GNS-modified electrode exhibites good electrochemical activity towards CT determination compared to other modified and unmodified electrodes. The electrochemical signal was acquired at a redox potential of 0.21 (Epa) and 0.17 (Epc) Volt (vs. Ag/AgCl). The proposed electrode exhibits low detection limit (1.0 nM), wide working range (0.009–132 μM), and good sensitivity (5.68 μA μM−1 cm−2). The electrochemical nanoprobe has good selectivity over potentially interfering compounds. The electrochemical sensor was applied to the analysis of environmental samples with acceptable recovery.

Schematic representation of electrochemical determination of catechol in the environmental sample analysis using lanthanum cobaltite supported on graphene nanosheets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Scheme 1
Fig. 3


  1. 1.

    Ahammad AS, Akter T, Al Mamun A, Islam T, Hasan MM, Mamun MA, Saha JK (2018) Cost-effective electrochemical sensor based on carbon nanotube modified-pencil electrode for the simultaneous determination of hydroquinone and catechol. J Electrochem Soc 165(9):390–397

    Article  Google Scholar 

  2. 2.

    Liu Z, Zhang Y, Bian C, Xia T, Gao Y, Zhang X, Wang X (2019) Highly sensitive microbial biosensor based on recombinant Escherichia coli overexpressing catechol 2, 3-dioxygenase for reliable detection of catechol. Biosens Bioelectron 126:51–58

    CAS  Article  Google Scholar 

  3. 3.

    Ramaraj S, Mani S, Chen SM, Kokulnathan T, Lou BS, Ali MA, Al-Hemaid FM (2018) Synthesis and application of bismuth ferrite nanosheets supported functionalized carbon nanofiber for enhanced electrochemical detection of toxic organic compound in water samples. J. Colloid Interface Sci 514:59–69

    CAS  Article  Google Scholar 

  4. 4.

    Huang W, Zhang T, Hu X, Wang Y, Wang J (2018) Amperometric determination of hydroquinone and catechol using a glassy carbon electrode modified with a porous carbon material doped with an iron species. Microchim Acta 185(1):37

    Article  Google Scholar 

  5. 5.

    Palanisamy S, Thangavelu K, Chen SM, Velusamy V, Chen TW, Kannan RS (2017) Preparation and characterization of a novel hybrid hydrogel composite of chitin stabilized graphite: application for selective and simultaneous electrochemical detection of dihydroxybenzene isomers in water. J Electroanal Chem 785:40–47

    CAS  Article  Google Scholar 

  6. 6.

    Aghapour AA, Moussavi G, Yaghmaeian K (2015) Degradation and COD removal of catechol in wastewater using the catalytic ozonation process combined with the cyclic rotating-bed biological reactor. J Environ Manag 157:262–266

    CAS  Article  Google Scholar 

  7. 7.

    Alshahrani LA, Liu L, Sathishkumar P, Nan J, Gu FL (2018) Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples. J Electroanal Chem 815:68–75

    CAS  Article  Google Scholar 

  8. 8.

    Shiraz AD, Takdastan A, Borghei SM (2018) Photo-Fenton like degradation of catechol using persulfate activated by UV and ferrous ions: influencing operational parameters and feasibility studies. J Mol Liq 249:463–469

    Article  Google Scholar 

  9. 9.

    Suresh S, Srivastava VC, Mishra IM (2012) Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: a review. Int J Energy Environ Eng 3(1):32

    Article  Google Scholar 

  10. 10.

    Ahammad AS, Sarker S, Rahman MA, Lee JJ (2010) Simultaneous determination of hydroquinone and catechol at an activated glassy carbon electrode. Electroanalysis 22(6):694–700

    CAS  Article  Google Scholar 

  11. 11.

    Xiang Y, Shi Z, Tan Y, Wu C, Liu Y, Wang J, Zhang S (2018) One-step synthesis of three-dimensional interconnected porous carbon and their modified electrode for simultaneous determination of hydroquinone and catechol. Sensors Actuators B Chem 267:302–311

    CAS  Article  Google Scholar 

  12. 12.

    Palanisamy S, Thangavelu K, Chen SM, Thirumalraj B, Liu XH (2016) Preparation and characterization of gold nanoparticles decorated on graphene oxide@ polydopamine composite: application for sensitive and low potential detection of catechol. Sens Actuators B 233:298–306

    CAS  Article  Google Scholar 

  13. 13.

    Garcia-Mesa JA, Mateos R (2007) Direct automatic determination of bitterness and total phenolic compounds in virgin olive oil using a pH-based flow-injection analysis system. J Agric Food Chem 55(10):3863–3868

    CAS  Article  Google Scholar 

  14. 14.

    Asan A, Isildak I (2003) Determination of major phenolic compounds in water by reversed-phase liquid chromatography after pre-column derivatization with benzoyl chloride. J Chromatogr A 988(1):145–149

    CAS  Article  Google Scholar 

  15. 15.

    Canevari TC, Raymundo-Pereira PA, Landers R, Machado SA (2013) Direct synthesis of Ag nanoparticles incorporated on a mesoporous hybrid material as a sensitive sensor for the simultaneous determination of dihydroxybenzenes isomers. Eur J Inorg Chem 2013(33):5746–5754

    CAS  Article  Google Scholar 

  16. 16.

    Ribeiro GH, Vilarinho LM, Ramos TDS, Bogado AL, Dinelli LR (2015) Electrochemical behavior of hydroquinone and catechol at glassy carbon electrode modified by electropolymerization of tetraruthenated oxovanadium porphyrin. Electrochim Acta 176:394–401

    CAS  Article  Google Scholar 

  17. 17.

    Ramakrishnan P, Rangiah K (2016) A UHPLC-MS/SRM method for analysis of phenolics from Camellia sinensis leaves from Nilgiri hills. Anal Methods 8(45):8033–8041

    CAS  Article  Google Scholar 

  18. 18.

    Lan C, Zhao S, Xu T, Ma J, Hayase S, Ma T (2016) Investigation on structures, band gaps, and electronic structures of lead free La2NiMnO6 double perovskite materials for potential application of solar cell. J Alloys Compd 655:208–214

    CAS  Article  Google Scholar 

  19. 19.

    Shen Z, Wang X, Luo B, Li L (2015) BaTiO3–BiYbO3 perovskite materials for energy storage applications. J Mater Chem A 3(35):18146–18153

    CAS  Article  Google Scholar 

  20. 20.

    Ekram H, Galal A, Atta NF (2016) The effect of A-site doping in a strontium palladium perovskite and its applications for non-enzymatic glucose sensing. RSC Adv 6(20):16183–16196

    Article  Google Scholar 

  21. 21.

    Björketun ME, Castelli IE, Rossmeisl J, Olsen T, Ukai K, Kato M, Jacobsen KW (2017) Defect chemistry and electrical conductivity of Sm-doped La1–x Sr x CoO3− δ for solid oxide fuel cells. J Phys Chem C 121(28):15017–15027

    Article  Google Scholar 

  22. 22.

    Liu X, Gong H, Wang T, Guo H, Song L, Xia W, He J (2018) Cobalt-doped perovskite-type oxide LaMnO3 as bifunctional oxygen catalysts for hybrid lithium–oxygen batteries. Chem Asian J 13(5):528–535

    CAS  Article  Google Scholar 

  23. 23.

    Wang B, Gu S, Ding Y, Chu Y, Zhang Z, Ba X, Li X (2013) A novel route to prepare LaNiO 3 perovskite-type oxide nanofibers by electrospinning for glucose and hydrogen peroxide sensing. Analyst 138(1):362–367

    CAS  Article  Google Scholar 

  24. 24.

    Karuppiah C, Wang S. F, Devasenathipathy R, Yang CC (2018) Dry particle coating preparation of highly conductive LaMnO3@ C composite for the oxygen reduction reaction and hydrogen peroxide sensing. J Taiwan Inst Chem Eng, 93: 94–102

    CAS  Article  Google Scholar 

  25. 25.

    Priyatharshni S, Tamilselvan A, Viswanathan C, Ponpandian N (2017) LaCoO3 nanostructures modified glassy carbon electrode for simultaneous electrochemical detection of dopamine, ascorbic acid and uric acid. J Electrochem Soc 164(4):152–158

    Article  Google Scholar 

  26. 26.

    Park BK, Song RH, Lee SB, Lim TH, Park SJ, Park CO, Lee JW (2015) A perovskite-type lanthanum cobaltite thin film synthesized via an electrochemical route and its application in SOFC interconnects. J Electrochem Soc 162(14):1549–1554

    Article  Google Scholar 

  27. 27.

    Lin KYA, Chen YC, Lin TY, Yang H (2017) Lanthanum cobaltite perovskite supported on zirconia as an efficient heterogeneous catalyst for activating Oxone in water. J Colloid Interface Sci 497:325–332

    CAS  Article  Google Scholar 

  28. 28.

    Zhang Z, Gu S, Ding Y, Jin J, Zhang F (2013) Determination of l-tryptophane using a sensor platform based on LaCoO3 poriferous nanofibers by electrospinning. Anal Methods 5(18):4859–4864

    CAS  Article  Google Scholar 

  29. 29.

    Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3(7):546

    CAS  Article  Google Scholar 

  30. 30.

    Sakthivel M, Ramaraj S, Chen SM, Dinesh B (2018) Synthesis of rose like structured LaCoO3 assisted functionalized carbon nanofiber nanocomposite for efficient electrochemical detection of anti-inflammatory drug 4-aminoantipyrine. Electrochim Acta 260:571–581

    CAS  Article  Google Scholar 

  31. 31.

    Chumakova V, Marikutsa A, Rumyantseva M, Fasquelle D, Gaskov A (2019) Nanocrystalline LaCoO3 modified by Ag nanoparticles with improved sensitivity to H2S. Sens Actuators B:126661

    Article  Google Scholar 

  32. 32.

    Choi S, Seo DH, Kaiser MR, Zhang C, Han ZJ, Bendavid A, Lee BR (2019) WO3 nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. J Mater ChemA 7(9):4596–4603

    CAS  Article  Google Scholar 

  33. 33.

    Kokulnathan T, Anthuvan AJ, Chen SM, Chinnuswamy V, Kadirvelu K (2018) Trace level electrochemical determination of the neurotransmitter dopamine in biological samples based on iron oxide nanoparticle decorated graphene sheets. Inorg Chem Front 5(3):705–718

    CAS  Article  Google Scholar 

  34. 34.

    Kokulnathan T, Chen SM (2019) Rational design for the synthesis of europium vanadate-encapsulated graphene oxide nanocomposite: an excellent and efficient catalyst for the electrochemical detection of clioquinol. ACS Sustain Chem Eng 7(4):4136–4146

    CAS  Article  Google Scholar 

Download references


This study received financial support from the Ministry of Science and Technology, Taiwan, Republic of China, under grants MOST 107-2221-E-027-079-MY3 and Nano mission Project (SR/NM/NS-20/2014 (G), DST, India).

Author information



Corresponding authors

Correspondence to Tzyy-Jiann Wang or R. Geetha Balakrishna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 1713 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suvina, V., Kokulnathan, T., Wang, TJ. et al. Lanthanum cobaltite supported on graphene nanosheets for non-enzymatic electrochemical determination of catechol. Microchim Acta 187, 189 (2020).

Download citation


  • Catechol
  • Binary metal oxide
  • Lanthanium cobaltite 
  • Electrocatalyst
  • Environmental samples