Colorimetric determination of tetrabromobisphenol A based on enzyme-mimicking activity and molecular recognition of metal-organic framework-based molecularly imprinted polymers

Abstract

A sol-gel method is presented to synthesize molecularly imprinted polymers (MIPs) composed with a copper-based metal-organic framework (referred to as MIP/HKUST-1) on a paper support to selectively recognize tetrabromobisphenol A (TBBPA). The imprinting factor is 7.6 and the maximum adsorption capacity is 187.3 mg g−1. This is much better than data for other MIPs. The degradation of TBBPA is introduced in the procedure. Due to the selective recognition by the MIP, the enzyme-mimicking properties of HKUST-1 under the MIP layer became weak due to the decrease of residue imprinted cavities. And adsorbed TBBPA can be degraded under consumption of hydrogen peroxide (H2O2). The combined effect of H2O2 and HKUST-1 cause the coloration caused by catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine to become less distinct. This amplification strategy is used for the ultrasensitive and highly selective colorimetric determination of TBBPA. The gray intensity is proportional to the logarithm concentration of TBBPA in the range of 0.01–10 ng g−1. The limit of detection is as low as 3 pg g−1, and the blank intensities caused by TBBPA analogues are <1% of that caused by TBBPA at the same concentration, this implying excellent selectivity. The spiked recoveries ranged from 94.4 to 106.6% with relative standard deviation values that were no more than 8.6%. Other features include low costs, rapid response, easy operation and on-site testing.

Schematic representation of colorimetric determination of tetrabromobisphenol A (TBBPA) by paper-based metal-organic framework-based molecularly imprinted polymers (MIP/HKUST-1 composites) using 3,3′,5,5′-tetramethylbenzidine (TMB) as a substrate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Law RJ, Allchin CR, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit CA (2006) Levels and trends of brominated flame retardants in the European environment. Chemosphere 64(2):187–208. https://doi.org/10.1016/j.chemosphere.2005.12.007

    CAS  Article  Google Scholar 

  2. 2.

    Wang Y, Liu G, Hou X, Huang Y, Li C, Wu K (2016) Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical reponse to tetrabromobisphenol a. Microchim Acta 183(2):689–696. https://doi.org/10.1007/s00604-015-1708-0

    CAS  Article  Google Scholar 

  3. 3.

    Abou-Elwafa Abdallah M (2016) Environmental occurrence, analysis and human exposure to the flame retardant tetrabromobisphenol-a (TBBP-A)-a review. Environ Int 94:235–250. https://doi.org/10.1016/j.envint.2016.05.026

    CAS  Article  Google Scholar 

  4. 4.

    Liu K, Li J, Yan S, Zhang W, Li Y, Han D (2016) A review of status of tetrabromobisphenol a (TBBPA) in China. Chemosphere 148:8–20. https://doi.org/10.1016/j.chemosphere.2016.01.023

    CAS  Article  Google Scholar 

  5. 5.

    Colnot T, Kacew S, Dekant W (2014) Mammalian toxicology and human exposures to the flame retardant 2,2′,6,6′-tetrabromo-4,4′-isopropylidenediphenol (TBBPA): implications for risk assessment. Arch Toxicol 88(3):553–573. https://doi.org/10.1007/s00204-013-1180-8

    CAS  Article  Google Scholar 

  6. 6.

    Wang J, Bever CR, Majkova Z, Dechant JE, Yang J, Gee SJ, Xu T, Hammock BD (2014) Heterologous antigen selection of camelid heavy chain single domain antibodies against tetrabromobisphenol a. Anal Chem 86(16):8296–8302. https://doi.org/10.1021/ac5017437

    CAS  Article  Google Scholar 

  7. 7.

    Qu G, Liu A, Hu L, Liu S, Shi J, Jiang G (2016) Recent advances in the analysis of TBBPA/TBBPS, TBBPA/TBBPS derivatives and their transformation products. TrAC Trends Anal Chem 83:14–24. https://doi.org/10.1016/j.trac.2016.06.021

    CAS  Article  Google Scholar 

  8. 8.

    Zhao Q, Zhang K, Yu G, Wu W, Wei X, Lu Q (2016) Facile electrochemical determination of tetrabromobisphenol a based on modified glassy carbon electrode. Talanta 151:209–216. https://doi.org/10.1016/j.talanta.2016.01.033

    CAS  Article  Google Scholar 

  9. 9.

    Li C, Chen X, Wu K, Yu S (2016) Signal enhancement of cetyltrimethylammonium bromide as a highly-sensitive sensing strategy for tetrabromobisphenol a. J Electroanal Chem 770:39–43. https://doi.org/10.1016/j.jelechem.2016.03.039

    CAS  Article  Google Scholar 

  10. 10.

    Wang Y, Chen F, Ye X, Wu T, Wu K, Li C (2017) Photoelectrochemical immunosensing of tetrabromobisphenol a based on the enhanced effect of dodecahedral gold nanocrystals/MoS2 nanosheets. Sensors Actuators B Chem 245:205–212. https://doi.org/10.1016/j.snb.2017.01.140

    CAS  Article  Google Scholar 

  11. 11.

    Shi H, Zhang L, Yu G, Liu Y, Chen L (2019) Molecularly imprinted mesoporous silica incorporating C3N4 dots and CdTe quantum dots as ratiometric fluorescent probe for determination of malachite green. Microchim Acta 186(8):556–510. https://doi.org/10.1007/s00604-019-3670-8

    CAS  Article  Google Scholar 

  12. 12.

    Raksawong P, Nurerk P, Chullasat K, Kanatharana P, Bunkoed O (2019) A polypyrrole doped with fluorescent CdTe quantum dots and incorporated into molecularly imprinted silica for fluorometric determination of ampicillin. Microchim Acta 186(6):338. https://doi.org/10.1007/s00604-019-3447-0

    CAS  Article  Google Scholar 

  13. 13.

    Sun X, Tao Y, Du Y, Ding W, Chen C, Ma X (2019) Metal organic framework HKUST-1 modified with carboxymethyl-β-cyclodextrin for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs. Microchim Acta 186(7):462. https://doi.org/10.1007/s00604-019-3584-5

    CAS  Article  Google Scholar 

  14. 14.

    Guan H-Y, LeBlanc RJ, Xie S-Y, Yue Y (2018) Recent progress in the syntheses of mesoporous metal–organic framework materials. Coord Chem Rev 369:76–90. https://doi.org/10.1016/j.ccr.2018.05.001

    CAS  Article  Google Scholar 

  15. 15.

    Li S, Liu X, Chai H, Huang Y (2018) Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAC Trends Anal Chem 105:391–403. https://doi.org/10.1016/j.trac.2018.06.001

    CAS  Article  Google Scholar 

  16. 16.

    Bagheri N, Khataee A, Habibi B, Hassanzadeh J (2018) Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179:710–718. https://doi.org/10.1016/j.talanta.2017.12.009

    CAS  Article  Google Scholar 

  17. 17.

    Guo T, Deng Q, Fang G, Gu D, Yang Y, Wang S (2016) Upconversion fluorescence metal-organic frameworks thermo-sensitive imprinted polymer for enrichment and sensing protein. Biosens Bioelectron 79:341–346. https://doi.org/10.1016/j.bios.2015.12.040

    CAS  Article  Google Scholar 

  18. 18.

    Feng Y, Lu K, Gao S, Mao L (2017) The fate and transformation of tetrabromobisphenol a in natural waters, mediated by oxidoreductase enzymes. Environ Sci Process Impacts 19(4):596–604. https://doi.org/10.1039/c6em00703a

    CAS  Article  Google Scholar 

  19. 19.

    Wang C, Gao J, Gu C (2017) Rapid destruction of Tetrabromobisphenol a by Iron(III)-Tetraamidomacrocyclic ligand/layered double hydroxide composite/H2O2 system. Environ Sci Technol 51(1):488–496. https://doi.org/10.1021/acs.est.6b04294

    CAS  Article  Google Scholar 

  20. 20.

    Apilux A, Siangproh W, Praphairaksit N, Chailapakul O (2012) Simple and rapid colorimetric detection of hg(II) by a paper-based device using silver nanoplates. Talanta 97:388–394. https://doi.org/10.1016/j.talanta.2012.04.050

    CAS  Article  Google Scholar 

  21. 21.

    Rattanarat P, Dungchai W, Cate D, Volckens J, Chailapakul O, Henry CS (2014) Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Anal Chem 86(7):3555–3562. https://doi.org/10.1021/ac5000224

    CAS  Article  Google Scholar 

  22. 22.

    Petit C, Huang L, Jagiello J, Kenvin J, Gubbins KE, Bandosz TJ (2011) Toward understanding reactive adsorption of ammonia on cu-MOF/graphite oxide nanocomposites. Langmuir 27(21):13043–13051. https://doi.org/10.1021/la202924y

    CAS  Article  Google Scholar 

  23. 23.

    Zhu Q, Chen Y, Wang W, Zhang H, Ren C, Chen H, Chen X (2015) A sensitive biosensor for dopamine determination based on the unique catalytic chemiluminescence of metal–organic framework HKUST-1. Sensors Actuators B Chem 210:500–507. https://doi.org/10.1016/j.snb.2015.01.012

    CAS  Article  Google Scholar 

  24. 24.

    Ho KL, Yuen KK, Yau MS, Murphy MB, Wan Y, Fong BM, Tam S, Giesy JP, Leung KS, Lam MH (2017) Glucuronide and sulfate conjugates of tetrabromobisphenol a (TBBPA): chemical synthesis and correlation between their urinary levels and plasma TBBPA content in voluntary human donors. Environ Int 98:46–53. https://doi.org/10.1016/j.envint.2016.09.018

    CAS  Article  Google Scholar 

  25. 25.

    Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of Iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012. https://doi.org/10.1021/nn300291r

    CAS  Article  Google Scholar 

  26. 26.

    Luo F, Lin Y, Zheng L, Lin X, Chi Y (2015) Encapsulation of Hemin in metal–organic frameworks for catalyzing the Chemiluminescence reaction of the H2O2–Luminol system and detecting glucose in the neutral condition. ACS Appl Mater Interfaces 7(21):11322–11329. https://doi.org/10.1021/acsami.5b01706

    CAS  Article  Google Scholar 

  27. 27.

    Irani-nezhad MH, Khataee A, Hassanzadeh J, Orooji Y (2019) A Chemiluminescent method for the detection of H2O2 and glucose based on intrinsic peroxidase-like activity of WS2 quantum dots. Molecules 24(4). https://doi.org/10.3390/molecules24040689

  28. 28.

    Shao Y, Zhou L, Wu Q, Bao C, Liu M (2017) Preparation of novel magnetic molecular imprinted polymers nanospheres via reversible addition - fragmentation chain transfer polymerization for selective and efficient determination of tetrabromobisphenol a. J Hazard Mater 339:418–426. https://doi.org/10.1016/j.jhazmat.2017.06.017

    CAS  Article  Google Scholar 

  29. 29.

    Wu Q, Li M, Huang Z, Shao Y, Bai L, Zhou L (2018) Well-defined nanostructured core–shell magnetic surface imprinted polymers (Fe3O4@SiO2@MIPs) for effective extraction of trace tetrabromobisphenol a from water. J Ind Eng Chem 60:268–278. https://doi.org/10.1016/j.jiec.2017.11.013

    CAS  Article  Google Scholar 

  30. 30.

    Yang J, Li Y, Wang J, Sun X, Cao R, Sun H, Huang C, Chen J (2015) Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples. Anal Chim Acta 872:35–45. https://doi.org/10.1016/j.aca.2015.02.058

    CAS  Article  Google Scholar 

  31. 31.

    Zhao W, Sheng N, Zhu R, Wei F, Cai Z, Zhai M, Du S, Hu Q (2010) Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol a from water samples. J Hazard Mater 179(1–3):223–229. https://doi.org/10.1016/j.jhazmat.2010.02.083

    CAS  Article  Google Scholar 

  32. 32.

    Li J, Zhang X, Liu Y, Tong H, Xu Y, Liu S (2013) Preparation of a hollow porous molecularly imprinted polymer using tetrabromobisphenol a as a dummy template and its application as SPE sorbent for determination of bisphenol a in tap water. Talanta 117:281–287. https://doi.org/10.1016/j.talanta.2013.09.022

    CAS  Article  Google Scholar 

  33. 33.

    Chen Y, Mu X, Lester E, Wu T (2018) High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity. Prog Nat Sci Mater 28(5):584–589. https://doi.org/10.1016/j.pnsc.2018.08.002

    CAS  Article  Google Scholar 

  34. 34.

    Klaysri R, Tubchareon T, Praserthdam P (2017) One-step synthesis of amine-functionalized TiO2 surface for photocatalytic decolorization under visible light irradiation. J Ind Eng Chem 45:229–236. https://doi.org/10.1016/j.jiec.2016.09.027

    CAS  Article  Google Scholar 

  35. 35.

    Gong S-X, Wang X-L, Liu W, Wang M-L, Wang X, Wang Z-W, Zhao R-S (2017) Aminosilanized magnetic carbon microspheres for the magnetic solid-phase extraction of bisphenol a, bisphenol AF, and tetrabromobisphenol a from environmental water samples. J Sep Sci 40(8):1755–1764. https://doi.org/10.1002/jssc.201601228

    CAS  Article  Google Scholar 

  36. 36.

    Yin YM, Chen YP, Wang XF, Liu Y, Liu HL, Xie MX (2012) Dummy molecularly imprinted polymers on silica particles for selective solid-phase extraction of tetrabromobisphenol a from water samples. J Chromatogr A 1220:7–13. https://doi.org/10.1016/j.chroma.2011.11.065

    CAS  Article  Google Scholar 

  37. 37.

    Chen YP, Wang DN, Yin YM, Wang LY, Wang XF, Xie MX (2012) Quantum dots capped with dummy molecularly imprinted film as luminescent sensor for the determination of tetrabromobisphenol a in water and soils. J Agric Food Chem 60(42):10472–10479. https://doi.org/10.1021/jf3026138

    CAS  Article  Google Scholar 

  38. 38.

    Zhou T, Feng Y, Zhou L, Tao Y, Luo D, Jing T, Shen X, Zhou Y, Mei S (2016) Selective and sensitive detection of tetrabromobisphenol-a in water samples by molecularly imprinted electrochemical sensor. Sensors Actuators B Chem 236:153–162. https://doi.org/10.1016/j.snb.2016.05.153

    CAS  Article  Google Scholar 

  39. 39.

    Boatright WL (2016) Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid. Food Chem 196:1361–1367. https://doi.org/10.1016/j.foodchem.2015.07.141

    CAS  Article  Google Scholar 

  40. 40.

    Zieminska E, Lenart J, Diamandakis D, Lazarewicz JW (2017) The role of Ca(2+) imbalance in the induction of acute oxidative stress and cytotoxicity in cultured rat cerebellar granule cells challenged with Tetrabromobisphenol a. Neurochem Res 42(3):777–787. https://doi.org/10.1007/s11064-016-2075-x

    CAS  Article  Google Scholar 

  41. 41.

    Hendriks HS, van Kleef RG, van den Berg M, Westerink RH (2012) Multiple novel modes of action involved in the in vitro neurotoxic effects of tetrabromobisphenol-a. Toxicol Sci 128(1):235–246. https://doi.org/10.1093/toxsci/kfs136

    CAS  Article  Google Scholar 

  42. 42.

    Chen HJ, Zhang ZH, Cai R, Kong XQ, Chen X, Liu YN, Yao SZ (2013) Molecularly imprinted electrochemical sensor based on a reduced graphene modified carbon electrode for tetrabromobisphenol a detection. Analyst 138(9):2769–2776. https://doi.org/10.1039/c3an00146f

    CAS  Article  Google Scholar 

  43. 43.

    Wang K, Liu Z, Ji P, Liu J, Eremin SA, Li QX, Li J, Xu T (2016) A camelid VHH-based fluorescence polarization immunoassay for the detection of tetrabromobisphenol a in water. Anal Methods 8(39):7265–7271. https://doi.org/10.1039/c6ay01603k

    CAS  Article  Google Scholar 

  44. 44.

    Bu D, Zhuang H, Zhou X, Yang G (2014) Biotin-streptavidin enzyme-linked immunosorbent assay for detecting Tetrabromobisphenol a in electronic waste. Talanta 120:40–46. https://doi.org/10.1016/j.talanta.2013.11.080

    CAS  Article  Google Scholar 

  45. 45.

    Guerra P, Eljarrat E, Barcelo D (2010) Simultaneous determination of hexabromocyclododecane, tetrabromobisphenol a, and related compounds in sewage sludge and sediment samples from Ebro River basin (Spain). Anal Bioanal Chem 397(7):2817–2824. https://doi.org/10.1007/s00216-010-3670-3

    CAS  Article  Google Scholar 

  46. 46.

    Ni HG, Zeng H (2013) HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Sci Total Environ 458-460:15–19. https://doi.org/10.1016/j.scitotenv.2013.04.003

    CAS  Article  Google Scholar 

  47. 47.

    Wang W, Abualnaja KO, Asimakopoulos AG, Covaci A, Gevao B, Johnson-Restrepo B, Kumosani TA, Malarvannan G, Minh TB, Moon HB, Nakata H, Sinha RK, Kannan K (2015) A comparative assessment of human exposure to tetrabromobisphenol a and eight bisphenols including bisphenol a via indoor dust ingestion in twelve countries. Environ Int 83:183–191. https://doi.org/10.1016/j.envint.2015.06.015

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21577042) and the National Basic Research Program of China (973 Program, No. 2015CB352100). We also thank the Analytical and Testing Center of Huazhong University of Science and Technology for TG-DSC, XPS, FT-IR and SEM analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tao Jing.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2232 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Cui, H., Chao, J. et al. Colorimetric determination of tetrabromobisphenol A based on enzyme-mimicking activity and molecular recognition of metal-organic framework-based molecularly imprinted polymers. Microchim Acta 187, 142 (2020). https://doi.org/10.1007/s00604-020-4119-9

Download citation

Keywords

  • MIP/HKUST-1 composites
  • On-site monitoring
  • Paper-based analytical devices
  • Signal amplification strategy
  • Peroxidase-like activity