Skip to main content
Log in

Single-excited double-emission CdTe@CdS quantum dots for use in a fluorometric hybridization assay for multiple tumor-related microRNAs

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method is described for the simultaneous determination of hepatocellular carcinoma-associated microRNA-122 and microRNA-199a/b-3p. This probe consists of two kinds of nanomaterials. The first comprises CdTe@CdS core-shell quantum dots which, on excitation at 375 nm give two emissions, with peak wavelengths at 543 (g-QDs) and at 627 nm (r-QDs). The second comprises gold nanoparticles acting as a quencher. In the absence of the target, g-QD-N1 and r-QD-N2 are stable due to the fluorescence stability. With the addition of microRNA-122 and microRNA-199a/b-3p, g-QD-N1 and r-QD-N2 are conjugated to the surface of AuNP-S1/S2 through base complementary pairing. As a result, fluorescence resonance energy transfer (FRET) occurs, resulting in a decrease at 550 nm and 635 nm respectively, which can realize the simultaneous detection of two different microRNAs. Detection is achieved within 50 min. The detection limits (3σ/k) are 0.2 nM for microRNA-122 and 0.5 nM for microRNA-199a/b-3p. The clinical applicability of the assay was demonstrated by detecting microRNAs in human serum and different cell lysates.

Schematic for the simultaneous determination of microRNA-122 and microRNA-199a/b-3p by FRET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gregory R I, Yan K P (2004) Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., Shiekhattar, R., The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  CAS  Google Scholar 

  2. Chen F, Liu Y, Chen C, Gong H, Cai C, Chen X (2017) Respective and simultaneous detection tumor markers CA125 and STIP1 using aptamer-based fluorescent and RLS sensors. Sens Actuators B Chem 245:470–476

    Article  CAS  Google Scholar 

  3. Xie N, Huang J, Yang X, Yang Y, Quan K, Wang H, Ying L, Ou M, Wang K (2016) A DNA tetrahedron-based molecular Beacon for tumor-related mRNA detection in living cell. Chem Commun 52:2346–2349

    Article  CAS  Google Scholar 

  4. Torrente-Rodríguez RM, Campuzano S, López-Hernández E, Ruiz-Valdepeñas Montiel V, Barderas R, Granados R, Sánchez-Puelles JM, Pingarrón JM (2015) Simultaneous detection of two breast cancer-related microRNAs in tumor tissues using p19-based disposable amperometric magnetobiosensing platforms, Biosens. Bioelectron 66:385–391

    Article  Google Scholar 

  5. Luan M, Li N, Pan W, Yang L, Yua Z, Tang B (2017) Simultaneous detection of multiple targets involved in the PI3K/AKT pathway for investigating cellular migration and invasion with a multicolor fluorescent nanoprobe. Chem Commun 53:356–359

    Article  CAS  Google Scholar 

  6. Butt AM, Raja AJ, Siddique S, Khan JS, Shahid M, Tayyab G-U-N, Minhas Z, Umar M, Idrees M, Tong Y (2016) Parallel expression profiling of hepatic and serum microRNA-122 associated with clinical features and treatment responses in chronic hepatitis C patients. Sci Rep 6:21510

    Article  CAS  Google Scholar 

  7. Zeng D, Wang ZH, Meng Z, Wang P, San L, Wang W, Aldalbahi A, Li L, Shen J, Mi X (2017) DNA tetrahedral nanostructure-based electrochemical miRNA biosensor for simultaneous detection of multiple miRNAs in pancreatic carcinoma. ACS Appl Mater Interfaces 9:24118–24125

    Article  CAS  Google Scholar 

  8. Wang J, Liu G, Merkoci A (2003) Electrochemical coding Technology for Simultaneous Detection of multiple DNA targets. J Am Chem Soc 125:3214–3215

    Article  CAS  Google Scholar 

  9. Song CY, Yang YJ, Yang BY, Sun YZ, Zhao YP, Wang LH (2016) Ultrasensitive SERS sensor for simultaneous detection of multiple cancer-related miRNAs. Nanoscale 8:17365

    Article  CAS  Google Scholar 

  10. Wegman DW, Ghasemi F, Khorshidi A, Yang BB, Liu SK, Yousef GM, Krylov SN (2015) Highly-sensitive amplification-free analysis of multiple miRNAs by capillary electrophoresis. Anal Chem 87:1404–1410

    Article  CAS  Google Scholar 

  11. Wang C, Zhang H, Zeng D, Sun W, Zhang H, Aldalbahi A, Wang Y, San L, Fan C, Zuo X, Mi X (2015) Elaborately designed diblock nanoprobes for simultaneous multicolor detection of microRNAs. Nanoscale 7:15822–15829

    Article  CAS  Google Scholar 

  12. Zhou W, Tian Y-F, Yin B-C, Ye B-C (2017) Simultaneous SERS detection of multiplexed MicroRNA biomarkers. Anal Chem 89:6120–6128

    Article  CAS  Google Scholar 

  13. Zhang H, Wang Y, Zhao D, Zeng D, Xia J, Aldalbahi A, Wang C, San L, Fan C, Zuo X, Mi X (2015) Universal fluorescence biosensor platform based on graphene quantum dots and Pyrene-functionalized molecular beacons for detection of MicroRNAs. ACS Appl Mater Interfaces 7:16152–16156

    Article  CAS  Google Scholar 

  14. Li B, Xu L, Chen Y, Zhu W, Shen X, Zhu C, Luo J, Li X, Hong J, Zhou X (2017) Sensitive and label-free fluorescent detection of transcription factors based on DNA-Ag nanoclusters molecular beacons and exonuclease III-assisted signal amplification. Anal Chem 89:7316–7323

    Article  CAS  Google Scholar 

  15. Zhu G, Liang L, Zhang C (2014) Quencher-free fluorescent method for homogeneously sensitive detection of microRNAs in human lung tissues. Anal Chem 86:11410–11416

    Article  CAS  Google Scholar 

  16. Goryacheva O, Mishra P, Goryacheva IY (2018) Luminescent quantum dots for miRNA detection. Talanta 179:456–465

    Article  CAS  Google Scholar 

  17. Hu J, Wen C-Y, Zhang Z-L, Xie M, Hu J, Wu M, Pang D-W (2013) Optically encoded multifunctional nanospheres for one-pot separation and detection of multiplex DNA sequences. Anal Chem 85:11929–11935

    Article  CAS  Google Scholar 

  18. Hu J, Li Y, Li Y, Tang B, Zhang C-Y (2017) Single quantum dot-based nanosensor for sensitive detection of O-GlcNAc transferase activity. Anal Chem 89:12992–12999

    Article  CAS  Google Scholar 

  19. Lowe SB, Dick JAG, Cohen BE, Stevend MM (2012) Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot - peptide conjugates. ACS Nano 6:851–857

    Article  CAS  Google Scholar 

  20. Zhou J, Wang Q-X, Zhang C-Y (2013) Liposome-quantum dot complexes enable multiplexed detection of attomolar DNAs without target amplification. J Am Chem Soc 135:2056–2059

    Article  CAS  Google Scholar 

  21. Song E, Han W, Li J, Jiang Y, Cheng D, Song Y, Zhang P, Tan W (2014) Magnetic-encoded fluorescent multifunctional nanospheres for simultaneous multicomponent analysis. Anal Chem 86:9434–4942

    Article  CAS  Google Scholar 

  22. Huang D, Niu C, Wang X, Lv X, Zeng G (2013) "Turn-on" fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Anal Chem 85:1164–1170

    Article  CAS  Google Scholar 

  23. Huang D, Niu C, Ruan M, Wang X, Zeng G, Deng C (2013) Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles. Environ Sci Technol 47:4392–4398

    Article  CAS  Google Scholar 

  24. Luo Z, Chao F, Peng H, Yong C, He X, Li Y, Zhao J (2016) Serum microrna-199a/b-3p as a predictive biomarker for treatment response in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. Oncotargets Ther 9:2667–2674

    CAS  Google Scholar 

  25. Moradian R, Elahi M, Hadizadeh A et al (2013) Structural, optical, and electrical properties of thioglycolic acid-capped CdTe quantum dots thin films[J]. Int Nano Lett 3(1):56

    Article  Google Scholar 

  26. Tang S, Gu Y, Lu H, Dong H, Zhang K, Dai W, Meng X, Yang F, Zhang X (2018) Highly-sensitive microRNA detection based on bio-bar-code assay and catalytic hairpin assembly two-stage amplification. Anal Chim Acta 1004:1–9

    Article  CAS  Google Scholar 

  27. Su S, Fan JW, Xue B, Yuwen LH, Liu XF, Pan D, Fan CH, Wang LH (2014) DNA-conjugated quantum dot Nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. ACS Appl Mater Interfaces 6:1152–1157

    Article  CAS  Google Scholar 

  28. Zare H, Marandi M, Fardindoost S, Sharma VK, Yeltik A, Akhavan O, Demir HV, Taghavinia N (2015) High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature. Nano Res 8:2317–2328

    Article  CAS  Google Scholar 

  29. Wang X, Lou X, Wang Y, Guo Q, Fang Z, Zhong X, Mao H, Jin Q, Wu L, Zhao H, Zhao J (2010) QD-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants. Biosens Bioelectron 25:1934–1940

    Article  CAS  Google Scholar 

  30. Ren M, Wang S, Cai C et al (2016) A simple and sensitive resonance light scattering method based on aggregation of gold nanoparticles for selective detection of microRNA-21[J]. RSC Adv 6(86):83078–83083

    Article  CAS  Google Scholar 

  31. Li J, Fu H-E, Wu L-J, Zheng A-X, Chen G-N, Yang H-H (2012) General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Anal Chem 84:5309–5315

    Article  CAS  Google Scholar 

  32. Tang T, Deng J, Zhang M, Shi G, Zhou T (2016) Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: a universal strategy for ratiometric detection of organophosphorus pesticides. Talanta 146:55–61

    Article  CAS  Google Scholar 

  33. Tian T, Xiao H, Zhang X, Peng S, Zhang X, Guo S, Wang S, Liu S, Zhou X, Meyers C, Zhou X (2012) Simultaneously sensitive detection of multiple microRNAs based on a strand displacement amplification. Chem Commun 49:75–77

    Article  Google Scholar 

  34. Lee JH, Kim JA, Jeong S, Rhee WJ (2016) Simultaneous and multiplexed detection of exosome microRNAs using molecular beacons. Biosens Bioelectron 86:202–210

    Article  CAS  Google Scholar 

  35. Wang L, Zhang Z, Wang FS (2012) The efficacy of miRNA122, a novel therapeutic target, for predicting the progression of hepatocellular carcinoma (HCC). Cell Mol Immunol 9:103–104

    Article  Google Scholar 

  36. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L, Wu X, Zheng Y, Yang Y (2011) Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 19:232–243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21775132), Natural Science Foundation of Hunan province (No.2018JJ2388), Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization, and “1515”academic leader team program of Hunan Agricultural University.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Ling Xiang, Jian Feng, Chunyan Chen performed the experiments. Feng Zhang and Changqun Cai supervised all research. Changqun Cai also wrote the manuscript. All authors contributed to reagents/materials/technical support to this study.

Corresponding authors

Correspondence to Chunyan Chen or Changqun Cai.

Ethics declarations

Conflict of interest

The authors declare no competing financial and non-financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, L., Zhang, F., Feng, J. et al. Single-excited double-emission CdTe@CdS quantum dots for use in a fluorometric hybridization assay for multiple tumor-related microRNAs. Microchim Acta 187, 134 (2020). https://doi.org/10.1007/s00604-020-4117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4117-y

Keywords

Navigation