Skip to main content
Log in

Plasmonic hot electron transfer-induced multicolor MoO3-x-based chromogenic system for visual and colorimetric determination of silver(I)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A plasmonic hot electron transfer-induced multicolor chromogenic system is described for label-free visual colorimetric determination of silver(I). The chromogenic system consists of plasmonic MoO3-x nanosheets with oxygen vacancies and Ag(I). Under white light-emitting diode (LED) excitation, energetic hot hole-electron pairs are formed on the surface of the blue MoO3-x nanosheets. The resulting hot electrons are transferred to Ag(I) upon which it becomes reduced. This results in the generation of yellow silver nanoparticles. Simultaneously, the hot holes lead to the oxidation of the MoO3-x nanosheets to yield colorless MoO3 nanosheets. Similarly, energetic hot hole-electron pairs can also be generated on the surface of AgNPs under white LED irradiation, which contributes to the reduction of Ag(I) and the oxidation of MoO3-x. Overall, a colorful transition from blue to green and finally to yellow can be observed. This multicolor chromogenic system was applied to the colorimetric determination of Ag(I) in the 33–200 μM concentration range and a 0.66 μM limit of detection, at analytical wavelengths of 430 and 760 nm. The method also is amenable to semi-quantitative visual determination of Ag(I).

Schematic representation of plasmonic hot electron transfer-induced multicolor MoO3-x-based chromogenic system for visual and colorimetric determination of silver(I).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Linic S, Aslam U, Boerigter C, Morabito M (2015) Photochemical transformations on plasmonic metal nanoparticles. Nat Mater 14(6):567–576. https://doi.org/10.1038/nmat4281

    Article  CAS  PubMed  Google Scholar 

  2. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10(12):911–921. https://doi.org/10.1038/nmat3151

    Article  CAS  PubMed  Google Scholar 

  3. Boerigter C, Campana R, Morabito M, Linic S (2016) Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat Commun 7:10545. https://doi.org/10.1038/ncomms10545

    Article  CAS  PubMed  Google Scholar 

  4. Rao VG, Aslam U, Linic S (2018) Chemical requirement for extracting energetic charge carriers from plasmonic metal nanoparticles to perform electron-transfer reactions. J Am Chem Soc 141(1):643–647. https://doi.org/10.1021/jacs.8b11949

    Article  CAS  PubMed  Google Scholar 

  5. Aslam U, Rao VG, Chavez S, Linic S (2018) Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat Catal 1(9):656–665. https://doi.org/10.1038/s41929-018-0138-x

    Article  Google Scholar 

  6. Shi Y, Wang J, Wang C, Zhai T-T, Bao W-J, Xu J-J, Xia X-H, Chen H-Y (2015) Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J Am Chem Soc 137(23):7365–7370. https://doi.org/10.1021/jacs.5b01732

    Article  CAS  PubMed  Google Scholar 

  7. Christopher P, Xin H, Linic S (2011) Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem 3(6):467–472. https://doi.org/10.1038/nchem.1032

    Article  CAS  PubMed  Google Scholar 

  8. Wang C, Nie X-G, Shi Y, Zhou Y, Xu J-J, Xia X-H, Chen H-Y (2017) Direct plasmon-accelerated electrochemical reaction on gold nanoparticles. ACS Nano 11(6):5897–5905. https://doi.org/10.1021/acsnano.7b01637

    Article  CAS  PubMed  Google Scholar 

  9. Christopher P, Xin H, Marimuthu A, Linic S (2012) Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat Mater 11(12):1044–1050. https://doi.org/10.1038/nmat3454

    Article  CAS  PubMed  Google Scholar 

  10. Voiry D, Shin HS, Loh KP, Chhowalla M (2018) Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat Rev Chem 2(1):0105–0117. https://doi.org/10.1038/s41570-017-0105

    Article  CAS  Google Scholar 

  11. Nazemi M, El-Sayed MA (2018) Electrochemical synthesis of Ammonia from N2 and H2O under ambient conditions using pore-size-controlled hollow gold Nanocatalysts with tunable Plasmonic properties. J Phy Chem Lett 9(17):5160–5166. https://doi.org/10.1021/acs.jpclett.8b02188

    Article  CAS  Google Scholar 

  12. Yang J, Guo Y, Lu W, Jiang R, Wang J (2018) Emerging applications of plasmons in driving CO2 reduction and N2 fixation. Adv Mater 30(48):1802227. https://doi.org/10.1002/adma.201802227

    Article  CAS  Google Scholar 

  13. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331(6015):290–291. https://doi.org/10.1126/science.1198258

    Article  CAS  PubMed  Google Scholar 

  14. Cheng H, Wen M, Ma X, Kuwahara Y, Mori K, Dai Y, Huang B, Yamashita H (2016) Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances. J Am Chem Soc 138(29):9316–9324. https://doi.org/10.1021/jacs.6b05396

    Article  CAS  PubMed  Google Scholar 

  15. De Castro IA, Datta RS, Ou JZ, Castellanos-Gomez A, Sriram S, Daeneke T, Kalantar-zadeh K (2017) Molybdenum oxides-from fundamentals to functionality. Adv Mater 29(40):1701619. https://doi.org/10.1002/adma.201701619

    Article  CAS  Google Scholar 

  16. Agrawal A, Johns RW, Milliron DJ (2017) Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu Rev Mater Res 47:1–31. https://doi.org/10.1146/annurev-matsci-070616-124259

    Article  CAS  Google Scholar 

  17. Faucheaux JA, Stanton AL, Jain PK (2014) Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities. J Phy Chem Lett 5(6):976–985. https://doi.org/10.1021/jz500037k

    Article  CAS  Google Scholar 

  18. Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ (2018) Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev 118(6):3121–3207. https://doi.org/10.1021/acs.chemrev.7b00613

    Article  CAS  PubMed  Google Scholar 

  19. Cheng H, Kamegawa T, Mori K, Yamashita H (2014) Surfactant-free nonaqueous synthesis of Plasmonic molybdenum oxide Nanosheets with enhanced catalytic activity for hydrogen generation from Ammonia Borane under visible light. Angew Chem Int Ed 53(11):2910–2914. https://doi.org/10.1002/anie.201309759

    Article  CAS  Google Scholar 

  20. Alsaif MM, Latham K, Field MR, Yao DD, Medehkar NV, Beane GA, Kaner RB, Russo SP, Ou JZ, Kalantar-zadeh K (2014) Tunable Plasmon resonances in two-dimensional molybdenum oxide Nanoflakes. Adv Mater 26(23):3931–3937. https://doi.org/10.1002/adma.201306097

    Article  CAS  PubMed  Google Scholar 

  21. Cheng H, Qian X, Kuwahara Y, Mori K, Yamashita H (2015) A Plasmonic molybdenum oxide hybrid with reversible Tunability for visible-light-enhanced catalytic reactions. Adv Mater 27(31):4616–4621. https://doi.org/10.1002/adma.201501172

    Article  CAS  PubMed  Google Scholar 

  22. Liu W, Xu Q, Cui W, Zhu C, Qi Y (2017) CO2-assisted fabrication of two-dimensional amorphous molybdenum oxide Nanosheets for enhanced Plasmon resonances. Angew Chem Int Ed 129(6):1622–1626. https://doi.org/10.1002/anie.201610708

    Article  CAS  Google Scholar 

  23. Huang W, Zhou Y, Du J, Deng Y, He Y (2018) Versatile visual logic operations based on plasmonic switching in label-free molybdenum oxide nanomaterials. Anal Chem 90(3):2384–2388. https://doi.org/10.1021/acs.analchem.7b05097

    Article  CAS  PubMed  Google Scholar 

  24. Li R, An H, Huang W, He Y (2018) Molybdenum oxide nanosheets meet ascorbic acid: tunable surface plasmon resonance and visual colorimetric detection at room temperature. Sensor Actuat B-Chem 259:59–63. https://doi.org/10.1016/j.snb.2017.12.058

    Article  CAS  Google Scholar 

  25. Zhang BY, Zavabeti A, Chrimes AF, Haque F, O'Dell LA, Khan H, Syed N, Datta R, Wang Y, Chesman AS (2018) Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing. Adv Fun Mater 28(11):1706006. https://doi.org/10.1002/adfm.201706006

    Article  CAS  Google Scholar 

  26. Du J, Zhao M, Huang W, Deng Y, He Y (2018) Visual colorimetric detection of tin (II) and nitrite using a molybdenum oxide nanomaterial-based three-input logic gate. Anal Bioanal Chem 410(18):4519–4526. https://doi.org/10.1007/s00216-018-1109-4

    Article  CAS  PubMed  Google Scholar 

  27. Huang W, Wang J, Du J, Deng Y, He Y (2019) Contrary logic pairs and circuits using a visually and colorimetrically detectable redox system consisting of MoO 3-x nanodots and 3, 3′-diaminobenzidine. Microchim Acta 186(2):79. https://doi.org/10.1007/s00604-018-3190-y

    Article  CAS  Google Scholar 

  28. Wang Y, Zhang X, Luo Z, Huang X, Tan C, Li H, Zheng B, Li B, Huang Y, Yang J (2014) Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale 6(21):12340–12344. https://doi.org/10.1039/C4NR04115A

    Article  CAS  PubMed  Google Scholar 

  29. González A, Noguez C, Beránek J, Barnard A (2014) Size, shape, stability, and color of plasmonic silver nanoparticles. J Phy Chem C 118(17):9128–9136. https://doi.org/10.1021/jp5018168

    Article  CAS  Google Scholar 

  30. Montelongo Y, Tenorio-Pearl JO, Williams C, Zhang S, Milne WI, Wilkinson TD (2014) Plasmonic nanoparticle scattering for color holograms. Proc Natl Acad Sci 111(35):12679–12683. https://doi.org/10.1073/pnas.1405262111

    Article  CAS  PubMed  Google Scholar 

  31. He Y, Zhang X (2016) Ultrasensitive colorimetric detection of manganese (II) ions based on anti-aggregation of unmodified silver nanoparticles. Sensor Actuat B-Chem 222:320–324. https://doi.org/10.1016/j.snb.2015.08.089

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of this research by the NSFC (21705134), Longshan Scholars Programme of Southwest University of Science and Technology (Grant No. 17LZX449 and 18LZX204), and China Aerodynamics Research and Development Center Foundation (Grant No. JPD20170142) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Wang, J., Deng, Y. et al. Plasmonic hot electron transfer-induced multicolor MoO3-x-based chromogenic system for visual and colorimetric determination of silver(I). Microchim Acta 187, 120 (2020). https://doi.org/10.1007/s00604-020-4108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4108-z

Keywords

Navigation