Skip to main content
Log in

Magnetic imprinted nanoparticles with synergistic tailoring of covalent and non-covalent interactions for purification and detection of procyanidin B2

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A synergistic imprinting strategy of covalent and non-covalent interactions is proposed to prepare magnetic molecularly imprinted polymers (DI-MMIPs) for highly selective separation of procyanidin B2 (PC) from grape seed samples. Dopamine and 3-amino-phenylboronic acid as cooperative functional monomers endow the imprinted sites with synergistic tailoring. Benefiting from the synergistic effect, the DI-MMIPs exhibit enhanced imprinting performance with high adsorption capacity (27.71 mg g−1), fast kinetic equilibrium time (within 30 min), outstanding selectivity (IF = 5.8, SC > 3.2), and satisfactory regeneration ability. In addition, the DI-MMIPs possess good magnetism, uniform morphology with typical core-shell structure, and stable crystallization. Furthermore, the established DI-MMIPs coupled with HPLC-UV (~ 280 nm) method has a wide linearity range of 0.05–200 μg mL−1 with correlation coefficient of 0.9997, high recoveries (> 93.1%) with RSDs from 2.9 to 5.5%, and low LOD (0.0008 μg mL−1). Consequently, this work provides an effective and easily tailored way to fabricate magnetic imprinted nanomaterials with both rapid recognition rate and high selectivity and thus holds great promise to realize the extraction and detection of PC from real samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621. https://doi.org/10.1002/anie.201000044

    Article  CAS  Google Scholar 

  2. Mendoza Wilson AM, Castro-Arredondo SI, Balandrán-Quintana RR (2014) Computational study of the structure-free radical scavenging relationship of procyanidins. Food Chem 161:155–161. https://doi.org/10.1016/j.foodchem.2014.03.111

    Article  CAS  PubMed  Google Scholar 

  3. Meo FD, Aversano R, Diretto G, Demurtas OC, Villano C, Cozzolino S, Filosa S, Carputo D, Crispi S (2019) Anti-cancer activity of grape seed semi-polar extracts in human mesothelioma cell lines. J Funct Foods 61:103515. https://doi.org/10.1016/j.jff.2019.103515

    Article  CAS  Google Scholar 

  4. Yang H, Xiao L, Yuan Y, Luo X, Jiang M, Ni J, Wang N (2014) Procyanidin B2 inhibits NLRP3 inflammasome activation in human vascular endothelial cells Biochem. Pharmacol 92:599–606. https://doi.org/10.1016/j.bcp.2014.10.001

    Article  CAS  Google Scholar 

  5. Pinent M, Blay M, Bladé MC, Salvadó MJ, Arola L, Ardévol A (2004) Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology 145:4985–4990. https://doi.org/10.1210/en.2004-0764

    Article  CAS  PubMed  Google Scholar 

  6. Justino AB, Franco RR, Silva H, Saraiva AL, Sousa R, Espindola FS (2019) B procyanidins of Annona crassiflora fruit peel inhibited glycation, lipid peroxidation and protein-bound carbonyls, with protective effects on glycated catalase. Sci Rep 9:19183. https://doi.org/10.1038/s41598-019-55779-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miranda-Hernandez AM, Muniz-Marquez DB, Wong-Paz JE, Aguilar-Zarate P, de la Rosa-Hernandez M, Larios-Cruz R, Aguilar CN (2019) Characterization by HPLC-ESI-MS2 of native and oxidized procyanidins from litchi (Litchi chinensis) pericarp. Food Chem 291:126–131. https://doi.org/10.1016/j.foodchem.2019.04.020

    Article  CAS  PubMed  Google Scholar 

  8. Corder R, Mullen W, Khan NQ, Marks SC, Wood EG, Carrier MG, Crozier A (2006) Oenology: red wine procyanidins and vascular health. Nature 444:566. https://doi.org/10.1038/444566a

    Article  CAS  PubMed  Google Scholar 

  9. Vidal-Casanella O, Nuñez O, Hernández-Cassou S, Saurina J (2020) Assessment of experimental factors affecting the sensitivity and selectivity of the spectrophotometric estimation of proanthocyanidins in foods and nutraceuticals. Food Anal Method. https://doi.org/10.1007/s12161-020-01878-1

  10. Silvan JM, Gutierrez-Docio A, Moreno-Fernandez S, Alarcon-Cavero T, Prodanov M, Martinez-Rodriguez AJ (2020) Procyanidin-rich extract from grape seeds as a putative tool against Helicobacter pylori. Foods 9:1370. https://doi.org/10.3390/foods9101370

    Article  PubMed Central  Google Scholar 

  11. Olennikov DN, Chirikova NK, Vasilieva AG, Fedorov IA (2020) LC-MS profile, gastrointestinal and gut microbiota stability and antioxidant activity of Rhodiola rosea herb metabolites: a comparative study with subterranean organs. Antioxidants 9:526. https://doi.org/10.3390/antiox9060526

    Article  CAS  PubMed Central  Google Scholar 

  12. Toro-Uribe S, Lopez-Giraldo LJ, Decker EA (2018) Relationship between the physiochemical properties of cocoa procyanidins and their ability to inhibit lipid oxidation in liposomes. J Agr Food Chem 66:4490–4502. https://doi.org/10.1021/acs.jafc.8b01074

    Article  CAS  Google Scholar 

  13. Sanchez M, Franco D, Sineiro J, Magarinos B, Nunez MJ (2009) Antioxidant power, bacteriostatic activity, and characterization of white grape pomace extracts by HPLC-ESI-MS. Eur Food Res Technol 230:291–301. https://doi.org/10.1007/s00217-009-1177-y

    Article  CAS  Google Scholar 

  14. Gutierrez-Docio A, Almodovar P, Moreno-Fernandez S, Silvan JM, Martinez-Rodriguez AJ, Alonso GL, Prodanov M (2020) Evaluation of an integrated ultrafiltration/solid phase extraction process for purification of oligomeric grape seed procyanidins. Membranes 10:147. https://doi.org/10.3390/membranes10070147

    Article  CAS  PubMed Central  Google Scholar 

  15. Toro-Uribe S, Herrero M, Decker EA, Lopez-Giraldo LJ, Ibanez E (2020) Preparative separation of procyanidins from cocoa polyphenolic extract: comparative study of different fractionation techniques. Molecules 25:2842. https://doi.org/10.3390/molecules25122842

    Article  CAS  PubMed Central  Google Scholar 

  16. Turiel E, Martín-Esteban A (2010) Molecularly imprinted polymers for sample preparation: a review. Anal Chem Acta 668:87–99. https://doi.org/10.1016/j.aca.2010.04.019

    Article  CAS  Google Scholar 

  17. Wang Y, Zhao W, Tian X, Song H, Gao R, Tang X, Zhang X, Hao Y, Tang Y (2020) High-efficiency recognition and detection of sulindac in sewage using hydrophilic imprinted resorcinol-formaldehyde resin magnetic nano-spheres as SPE adsorbents combined with HPLC. Chem Eng J 392:123716. https://doi.org/10.1016/j.cej.2019.123716

    Article  CAS  Google Scholar 

  18. Shi J, Li G, Cui Y, Zhang Y, Liu D, Shi Y, He H (2019) Surface-imprinted β-cyclodextrin-functionalized carbon nitride nanosheets for fluorometric determination of sterigmatomycin. Microchim Acta 186:808. https://doi.org/10.1007/s00604-019-3867-x

    Article  CAS  Google Scholar 

  19. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211. https://doi.org/10.1039/c6cs00061d

    Article  CAS  PubMed  Google Scholar 

  20. García-Calzón JA, Díaz-García ME (2007) Characterization of binding sites in molecularly imprinted polymers. Sensors Actuat B: Chem 123:1180–1194. https://doi.org/10.1016/j.snb.2006.10.068

    Article  CAS  Google Scholar 

  21. Li L, Lu Y, Bie Z, Chen H, Liu Z (2013) Photolithographic boronate affinity molecular imprinting: a general and facile approach for glycoprotein imprinting. Angew Chem Int Ed 52:7451–7454. https://doi.org/10.1002/anie.201207950

    Article  CAS  Google Scholar 

  22. Bie Z, Chen Y, Ye J, Wang S, Liu Z (2015) Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew Chem Int Ed 54:10211–10215. https://doi.org/10.1002/anie.201503066

    Article  CAS  Google Scholar 

  23. Lofgreen JE, Ozin GA (2014) Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. Chem Soc Rev 43:911–933. https://doi.org/10.1039/c3cs60276a

    Article  CAS  PubMed  Google Scholar 

  24. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180. https://doi.org/10.1002/jmr.760

    Article  CAS  PubMed  Google Scholar 

  25. Bai X, Zhang B, Liu M, Hu X, Fang G, Wang S (2020) Molecularly imprinted electrochemical sensor based on polypyrrole/dopamine@graphene incorporated with surface molecularly imprinted polymers thin film for recognition of olaquindox. Bioelectrochemistry 132:107398. https://doi.org/10.1016/j.bioelechem.2019.107398

    Article  CAS  PubMed  Google Scholar 

  26. Wang M, Ye F, Wang H, Admassu H, Gasmalla MAA, Hua X, Yang R (2019) High efficiency selective and reversible capture of lactulose using new boronic acid-functionalized porous polymeric monoliths. Chem Eng J 370:1274–1285. https://doi.org/10.1016/j.cej.2019.03.264

    Article  CAS  Google Scholar 

  27. Shen Y, Yuan F, Liu X, Huang Y, Liu Z (2019) Synergistic effect of organic-inorganic hybrid monomer and polyhedral oligomeric silsesquioxanes in a boronate affinity monolithic capillary/chip for enrichment of glycoproteins. Microchim Acta 186:812. https://doi.org/10.1007/s00604-019-3938-z

    Article  CAS  Google Scholar 

  28. Liu M, Li X, Li J, Wu Z, Wang F, Liu L, Tan X, Lei F (2017) Selective separation and determination of glucocorticoids in cosmetics using dual-template magnetic molecularly imprinted polymers and HPLC. J Colloid Interf Sci 504:124–133. https://doi.org/10.1016/j.jcis.2017.05.041

    Article  CAS  Google Scholar 

  29. Wang M, Gao M, Zhang K, Wang L, Wang W, Fu Q, Xia Z, Gao D (2019) Magnetic covalent organic frameworks with core-shell structure as sorbents for solid phase extraction of fluoroquinolones, and their quantitation by HPLC. Microchim Acta 186:827. https://doi.org/10.1007/s00604-019-3757-2

    Article  CAS  Google Scholar 

  30. Liu J, Li JXL, Qiao Y, Chen J (2017) Facile synthesis of N, B-doped carbon dots and their application for multisensor and cellular imaging. Ind Eng Chem Res 56:3905–3912. https://doi.org/10.1021/acs.iecr.6b04752

    Article  CAS  Google Scholar 

  31. Su X, Ma R, Chen J, Shi Y (2017) Boronate-affinity based magnetic molecularly imprinted nanoparticles for the efficient extraction of the model glycoprotein horseradish peroxidase. Microchim Acta 184:3729–3737. https://doi.org/10.1007/s00604-017-2373-2

    Article  CAS  Google Scholar 

  32. Han W, Han X, Liu Z, Zhang S, Li Y, Lu J, Chen J, Ou L, Fu G (2020) Facile modification of protein-imprinted polydopamine coatings over nanoparticles with enhanced binding selectivity. Chem Eng J 385:123463. https://doi.org/10.1016/j.cej.2019.123463

    Article  CAS  Google Scholar 

  33. Niu J, Liu H, Wang X, Wu D (2019) Molecularly imprinted phase-change microcapsule system for bifunctional applications in waste heat recovery and targeted pollutant removal. ACS Appl Mater Inter 11:37644–37664. https://doi.org/10.1021/acsami.9b11856

    Article  CAS  Google Scholar 

  34. Awual MR, Asiri AM, Rahman MM, Alharthi NH (2019) Assessment of enhanced nitrite removal and monitoring using ligand modified stable conjugate materials. Chem Eng J 363:64–72. https://doi.org/10.1016/j.cej.2019.01.125

    Article  CAS  Google Scholar 

  35. Yu C, Lu J, Dai J, Dong Z, Lin X, Xing W, Wu Y, Ma Z (2020) Bio-inspired fabrication of ester-functionalized imprinted composite membrane for rapid and high-efficient recovery of lithium ion from seawater. J Colloid Interf Sci 572:340–353. https://doi.org/10.1016/j.jcis.2020.03.091

    Article  CAS  Google Scholar 

  36. Zhao B, He M, Chen B, Hu B (2019) Fe3O4 nanoparticles coated with double imprinted polymers for magnetic solid phase extraction of lead (II) from biological and environmental samples. Microchim Acta 186:775. https://doi.org/10.1007/s00604-019-3819-5

    Article  CAS  Google Scholar 

  37. Li W, Chen N, Zhu Y, Shou D, Zhi M, Zeng X (2019) A nanocomposite consisting of an amorphous seed and a molecularly imprinted covalent organic framework shell for extraction and HPLC determination of nonsteroidal anti-inflammatory drugs. Microchim Acta 186:76. https://doi.org/10.1007/s00604-018-3187-6

    Article  CAS  Google Scholar 

  38. Wu Y, Xing W, Yan J, Cui J, Ma F, Gao J, Lu J, Yu C, Yan M (2020) Multilevel mineral-coated imprinted nanocomposite membranes for template-dependent recognition and separation: a well-designed strategy with PDA/CaCO3-based loading structure. J Colloid Interf Sci 575:356–366. https://doi.org/10.1016/j.jcis.2020.04.095

    Article  CAS  Google Scholar 

  39. Pan J, Hang H, Li X, Zhu W, Meng M, Dai X, Dai J, Yan Y (2013) Fabrication and evaluation of temperature responsive molecularly imprinted sorbents based on surface of yeast via surface-initiated AGET ATRP. Appl Surf Sci 287:211–217. https://doi.org/10.1016/j.apsusc.2013.09.130

    Article  CAS  Google Scholar 

  40. Li J, Huang X, Ma J, Wei S, Zhang H (2020) A novel electrochemical sensor based on molecularly imprinted polymer with binary functional monomers at Fe-doped porous carbon decorated Au electrode for the sensitive detection of lomefloxacin. Microchim Acta 26:4183–4192. https://doi.org/10.1007/s11581-020-03554-0

    Article  CAS  Google Scholar 

  41. Wang L, Li J, Wang J, Guo X, Wang X, Choo J, Chen L (2019) Green multi-functional monomer based ion imprinted polymers for selective removal of copper ions from aqueous solution. J Colloid Interf Sci 541:376–386. https://doi.org/10.1016/j.jcis.2019.01.081

    Article  CAS  Google Scholar 

  42. Zhang Y, Liu D, Peng J, Cui Y, Shi Y, He H (2020) Magnetic hyperbranched molecularly imprinted polymers for selective enrichment and determination of zearalenone in wheat proceeded by HPLC-DAD analysis. Talanta 209:120555. https://doi.org/10.1016/j.talanta.2019.120555

    Article  CAS  PubMed  Google Scholar 

  43. Qi P, Wang J, Wang L, Li Y, Jin J, Su F, Tian Y, Chen J (2010) Molecularly imprinted polymers synthesized via semi-covalent imprinting with sacrificial spacer for imprinting phenols. Polymer 51:5417–5423. https://doi.org/10.1016/j.polymer.2010.09.037

    Article  CAS  Google Scholar 

  44. Kicel A, Owczarek A, Kapusta P, Kolodziejczyk-Czepas J, Olszewska MA (2020) Contribution of individual polyphenols to antioxidant activity of Cotoneaster bullatus and Cotoneaster zabelii leaves-structural relationships, synergy effects and application for quality control. Antioxidants 9:69. https://doi.org/10.3390/antiox9010069

    Article  CAS  PubMed Central  Google Scholar 

  45. Wang L, Yamashita Y, Saito A, Ashida H (2017) An analysis method for flavan-3-ols using high performance liquid chromatography coupled with a fluorescence detector. J Food Drug Anal 25:478–487. https://doi.org/10.1016/j.jfda.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  46. Jia M, Yang J, Zhao Y, Liu Z, Aisa HA (2017) A strategy of improving the imprinting effect of molecularly imprinted polymer: effect of heterogeneous macromolecule crowding. Talanta 175:488–494. https://doi.org/10.1016/j.talanta.2017.07.075

    Article  CAS  PubMed  Google Scholar 

  47. Chavari M, de Goes PRN, Lachi-Silva L, Barth AB, da Silva AOF, Longhini R, de Mello JCP, Kimura E, Diniz A (2019) Simultaneous liquid chromatography-tandem mass spectrometry method to quantify epicatechin and procyanidin B2 in rat plasma after oral administration of trichilia catigua (catuaba) extract and its application to a pharmacokinetic study. Rev Bras Farmacogn 29:457–463. https://doi.org/10.1016/j.bjp.2018.08.011

    Article  CAS  Google Scholar 

Download references

Funding

This research received funding from the National Natural Science Foundation of China (Nos. 81701830, 31800286), the Natural Science Foundation of Shaanxi Province (2020JM-066, 2020JQ-019), the Fundamental Research Funds for the Central Universities (No. xjj2017028), and China Postdoctoral Science Foundation (Nos. 2016 M600800, 2017 M623200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Hao or Ruixia Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 652 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Song, H., Tian, X. et al. Magnetic imprinted nanoparticles with synergistic tailoring of covalent and non-covalent interactions for purification and detection of procyanidin B2. Microchim Acta 188, 17 (2021). https://doi.org/10.1007/s00604-020-04693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04693-x

Keywords

Navigation