Impedimetric determination of cortisol using screen-printed electrode with aptamer-modified magnetic beads

Abstract

A non-invasive aptamer-based electrochemical biosensor using disposable screen-printed graphene electrodes (SPGEs) was developed for simple, rapid, and sensitive determination of cortisol levels. Selective detection of cortisol based on a label-free electrochemical assay was achieved by specific recognition of the cortisol DNA aptamer (CApt). The CApt was modified with streptavidin magnetic beads (MBs) before simple immobilization onto the electrode surface using a neodymium magnet. The electrochemical behavior of the aptamer-based biosensor was assessed by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) (vs Ag/AgCl). The specific binding between cortisol and CApt resulted in a decrease in charge transfer resistance (Rct) from EIS using [Fe(CN)6]3−/4− with increasing cortisol concentration. Under optimal conditions, a linear range from 0.10 to 100 ng/mL with a low detection limit (3SD/slope) of 2.1 pg/mL was obtained. Furthermore, the proposed biosensing system exhibited a satisfactory recovery in the range 97.4–109.2% with 5.7–6.6% RSD in spiked artificial human sweat. Regarding the applications of this tool, the aptamer-based biosensor has potential to be a versatile and point-of-care (POC) device for simple, sensitive, selective, disposable, and low-cost cortisol detection.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Fu HJ, Yuan LP, Shen YD, Liu YX, Liu B, Zhang SW, Xie ZX, Lei HT, Sun YM, Xu ZL (2018) A full-automated magnetic particle-based chemiluminescence immunoassay for rapid detection of cortisol in milk. Anal Chim Acta 1035:129–135. https://doi.org/10.1016/j.aca.2018.06.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Kamarainen S, Maki M, Tolonen T, Palleschi G, Virtanen V, Micheli L, Sesay AM (2018) Disposable electrochemical immunosensor for cortisol determination in human saliva. Talanta 188:50–57. https://doi.org/10.1016/j.talanta.2018.05.039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Jeong G, Oh J, Jang J (2019) Fabrication of N-doped multidimensional carbon nanofibers for high-performance cortisol biosensors. Biosens Bioelectron 131:30–36. https://doi.org/10.1016/j.bios.2019.01.061

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kaushik A, Vasudev A, Arya SK, Pasha SK, Bhansali S (2014) Recent advances in cortisol sensing technologies for point-of-care application. Biosens Bioelectron 53:499–512. https://doi.org/10.1016/j.bios.2013.09.060

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Kinnamon D, Ghanta R, Lin KC, Muthukumar S, Prasad S (2017) Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci Rep 7(1):13312. https://doi.org/10.1038/s41598-017-13684-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Jeon J, Uthaman S, Lee J, Hwang H, Kim G, Yoo PJ, Hammock BD, Kim CS, Park Y-S, Park I-K (2018) In-direct localized surface plasmon resonance (LSPR)-based nanosensors for highly sensitive and rapid detection of cortisol. Sensors Actuators B Chem 266:710–716. https://doi.org/10.1016/j.snb.2018.03.167

    CAS  Article  Google Scholar 

  7. 7.

    Sanghavi BJ, Moore JA, Chavez JL, Hagen JA, Kelley-Loughnane N, Chou CF, Swami NS (2016) Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens Bioelectron 78:244–252. https://doi.org/10.1016/j.bios.2015.11.044

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Li C, Zhang Z, Liu X, Shen K, Gu P, Kang X (2017) Simultaneous quantification of cortisol and cortisone in urines from infants with packed-fiber solid-phase extraction coupled to HPLC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 1061-1062:163–168. https://doi.org/10.1016/j.jchromb.2017.07.012

    CAS  Article  Google Scholar 

  9. 9.

    Dhull N, Kaur G, Gupta V, Tomar M (2019) Highly sensitive and non-invasive electrochemical immunosensor for salivary cortisol detection. Sensors Actuators B Chem 293:281–288. https://doi.org/10.1016/j.snb.2019.05.020

    CAS  Article  Google Scholar 

  10. 10.

    Dalirirad S, Steckl AJ (2019) Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sensors Actuators B Chem 283:79–86. https://doi.org/10.1016/j.snb.2018.11.161

    CAS  Article  Google Scholar 

  11. 11.

    Bravo AM, Castro MDL (2014) Sweat: a sample with limited present applications and promising future in metabolomics. J Pharm Biomed Anal 90:139–147. https://doi.org/10.1016/j.jpba.2013.10.048

    CAS  Article  Google Scholar 

  12. 12.

    Heikenfeld J (2016) Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis 28(6):1242–1249. https://doi.org/10.1002/elan.201600018

    CAS  Article  Google Scholar 

  13. 13.

    Kobayashi N, Sun P, Fujimaki Y, Niwa T, Nishio T, Goto J, Hosoda H (2002) Generation of a novel monoclonal antibody against cortisol[C-4]-bovine serum albumin conjugate: Application to enzyme-linked immunosorbent assay for urinary and serum cortisol. Anal Sci 18:1309–1314. https://doi.org/10.2116/analsci.18.1309

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Ito T, Aoki N, Shinobu W, Suzuki K (2014) Duplicate analysis of cortisol for stress check using QCM with a self–suction flow system. Procedia Eng. 87:296–299. https://doi.org/10.1016/j.proeng.2014.11.666

  15. 15.

    Yao Y, Jiang C, Ping J (2019) Flexible freestanding graphene paper-based potentiometric enzymatic aptasensor for ultrasensitive wireless detection of kanamycin. Biosens Bioelectron 123:178–184. https://doi.org/10.1016/j.bios.2018.08.048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ma F, Yan J, Sun L, Chen Y (2019) Electrochemical impedance spectroscopy for quantization of matrix Metalloproteinase-14 based on peptides inhibiting its homodimerization and heterodimerization. Talanta 205:120142. https://doi.org/10.1016/j.talanta.2019.120142

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    He B, Dong X (2019) Hierarchically porous Zr-MOFs labelled methylene blue as signal tags for electrochemical patulin aptasensor based on ZnO nano flower. Sensors Actuators B Chem 294:192–198. https://doi.org/10.1016/j.snb.2019.05.045

    CAS  Article  Google Scholar 

  18. 18.

    Jampasa S, Siangproh W, Laocharoensuk R, Vilaivan T, Chailapakul O (2018) Electrochemical detection of c-reactive protein based on anthraquinone-labeled antibody using a screen-printed graphene electrode. Talanta 183:311–319. https://doi.org/10.1016/j.talanta.2018.02.075

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Makhneva E, Farka Z, Skládal P, Zajíčková L (2018) Cyclopropylamine plasma polymer surfaces for label-free SPR and QCM immunosensing of Salmonella. Sensors Actuators B Chem 276:447–455. https://doi.org/10.1016/j.snb.2018.08.055

    CAS  Article  Google Scholar 

  20. 20.

    Fernandez RE, Umasankar Y, Manickam P, Nickel JC, Iwasaki LR, Kawamoto BK, Todoki KC, Scott JM, Bhansali S (2017) Disposable aptamer-sensor aided by magnetic nanoparticle enrichment for detection of salivary cortisol variations in obstructive sleep apnea patients. Sci Rep 7(1):17992. https://doi.org/10.1038/s41598-017-17835-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O, Henry CS (2018) Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection. Anal Chim Acta 1044:102–109. https://doi.org/10.1016/j.aca.2018.07.045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Bai C, Lu Z, Jiang H, Yang Z, Liu X, Ding H, Li H, Dong J, Huang A, Fang T, Jiang Y, Zhu L, Lou X, Li S, Shao N (2018) Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosens Bioelectron 110:162–167. https://doi.org/10.1016/j.bios.2018.03.047

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Liang G, Man Y, Jin X, Pan L, Liu X (2016) Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Anal Chim Acta 936:222–228. https://doi.org/10.1016/j.aca.2016.06.056

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gao S, Hu W, Zheng X, Cai S, Wu J (2019) Functionalized aptamer with an antiparallel G-quadruplex: Structural remodeling, recognition mechanism, and diagnostic applications targeting CTGF. Biosens Bioelectron 142:111475. https://doi.org/10.1016/j.bios.2019.111475

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Weng X, Neethirajan S (2017) Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device. Microchim Acta 184(11):4545–4552. https://doi.org/10.1007/s00604-017-2467-x

    CAS  Article  Google Scholar 

  26. 26.

    Kiruba Daniel SCG, Kumar A, Sivasakthi K, Thakur CS (2019) Handheld, low-cost electronic device for rapid, real-time fluorescence-based detection of Hg2+, using aptamer-templated ZnO quantum dots. Sensors Actuators B Chem 290:73–78. https://doi.org/10.1016/j.snb.2019.03.113

    CAS  Article  Google Scholar 

  27. 27.

    Luo Y, Wang J, Yang L, Gao T, Pei R (2018) In vitro selection of DNA aptamers for the development of fluorescent aptasensor for sarcosine detection. Sensors Actuators B Chem 276:128–135. https://doi.org/10.1016/j.snb.2018.08.105

    CAS  Article  Google Scholar 

  28. 28.

    Abnousa K, Daneshc NM, R M, Alibolandia M, Taghdisi SM (2018) A novel electrochemical sensor for bisphenol A detection based on nontarget-induced extension of aptamer length and formation of a physical barrier. Biosens Bioelectron 119:204–208. https://doi.org/10.1016/j.bios.2018.08.024

    CAS  Article  Google Scholar 

  29. 29.

    Feng S, Chen C, Wang W, Que L (2018) An aptamer nanopore-enabled microsensor for detection of theophylline. Biosens Bioelectron 105:36–41. https://doi.org/10.1016/j.bios.2018.01.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Zhou L, Wang M-H, Wang J-P, Ye Z-Z (2011) Application of biosensor surface immobilization methods for aptamer. Chin J Anal Chem 39(3):432–438. https://doi.org/10.1016/s1872-2040(10)60429-x

    CAS  Article  Google Scholar 

  31. 31.

    Balamurugan S, Obubuafo A, Soper SA, Spivak DA (2008) Surface immobilization methods for aptamer diagnostic applications. Anal Bioanal Chem 390(4):1009–1021. https://doi.org/10.1007/s00216-007-1587-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Xue Y, Jiang D-l, Hu Q, Rao S-q, Gao L, Yang Z-q (2019) Electrochemical magnetic bead-based immunosensor for rapid and quantitative detection of probiotic Lactobacillus rhamnosus in dairy products. Food Anal Methods 12(5):1197–1207. https://doi.org/10.1007/s12161-019-01457-z

    Article  Google Scholar 

  33. 33.

    Modh H, Scheper T, Walter JG (2018) Aptamer-modified magnetic beads in biosensing. Sensors (Basel) 18(4). https://doi.org/10.3390/s18041041

  34. 34.

    Teengam P, Siangproh W, Tuantranont A, Henry CS, Vilaivan T, Chailapakul O (2017) Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. Anal Chim Acta 952:32–40. https://doi.org/10.1016/j.aca.2016.11.071

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Randviir EP, Banks CE (2013) Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal Methods 5(5):1098. https://doi.org/10.1039/c3ay26476a

    CAS  Article  Google Scholar 

  36. 36.

    Ghanbari K, Roushani M (2018) A nanohybrid probe based on double recognition of an aptamer MIP grafted onto a MWCNTs-Chit nanocomposite for sensing hepatitis C virus core antigen. Sensors Actuators B Chem 258:1066–1071. https://doi.org/10.1016/j.snb.2017.11.145

    CAS  Article  Google Scholar 

  37. 37.

    Mao K, Yang Z, Li J, Zhou X, Li X, Hu J (2017) A novel colorimetric biosensor based on non-aggregated Au@Ag core-shell nanoparticles for methamphetamine and cocaine detection. Talanta 175:338–346. https://doi.org/10.1016/j.talanta.2017.07.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Erdem A, Pividori MI, Lermo A, Bonanni A, del Valle M, Alegret S (2006) Genomagnetic assay based on label-free electrochemical detection using magneto-composite electrodes. Sensors Actuators B Chem 114(2):591–598. https://doi.org/10.1016/j.snb.2005.05.031

    CAS  Article  Google Scholar 

  39. 39.

    Ocana C, Hayat A, Mishra RK, Vasilescu A, Del Valle M, Marty JL (2015) Label free aptasensor for Lysozyme detection: a comparison of the analytical performance of two aptamers. Bioelectrochemistry 105:72–77. https://doi.org/10.1016/j.bioelechem.2015.05.009

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82(19):8131–8136. https://doi.org/10.1021/ac101409t

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Yu X, He L, Pentok M, Yang H, Yang Y, Li Z, He N, Deng Y, Li S, Liu T, Chen X, Luo H (2019) An aptamer-based new method for competitive fluorescence detection of exosomes. Nanoscale 11(33):15589–15595. https://doi.org/10.1039/c9nr04050a

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Shin J, Kim S, Yoon T, Joo C, Jung HI (2019) Smart fatigue phone: real-time estimation of driver fatigue using smartphone-based cortisol detection. Biosens Bioelectron 136:106–111. https://doi.org/10.1016/j.bios.2019.04.046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors thank financial supports from the Science Achievement Scholarship of Thailand (SAST), the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksompot Endowment Fund) (GCUGR1125633049D), National Research Council of Thailand (NRCT), and the Electrochemistry and Optical Spectroscopy Research Unit (EOSCE), Chulalongkorn University. PT would like to acknowledge the Second Century Fund (C2F), Chulalongkorn University, for providing the fellowship.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nichanan Thepsuparungsikul or Orawon Chailapakul.

Ethics declarations

Conflict of interest

We have used artificial human sweat as analyte-free sample. Therefore, the human research ethics for the analysis of real sample are not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 584 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pusomjit, P., Teengam, P., Thepsuparungsikul, N. et al. Impedimetric determination of cortisol using screen-printed electrode with aptamer-modified magnetic beads. Microchim Acta 188, 41 (2021). https://doi.org/10.1007/s00604-020-04692-y

Download citation

Keywords

  • Aptamer
  • Electrochemical impedance spectroscopy
  • Non-invasive
  • Cortisol
  • Label-free
  • Screen-printed graphene electrode