A turn-on–type fluorescence resonance energy transfer aptasensor for vibrio detection using aptamer-modified polyhedral oligomeric silsesquioxane-perovskite quantum dots/Ti3C2 MXenes composite probes

Abstract

A pair of composite probes based on aptamer modified polyhedral oligomeric silsesquioxane-perovskite quantum dots (POSS-PQDs-Apt) as signal probe and titanium carbide (Ti3C2) MXenes as quencher were prepared for the first time. They were employed to fabricate one turn-on–type aptasensor relying on fluorescence resonance energy transfer (FRET) for Vibrio parahaemolyticus (VP) determination. The POSS-PQDs-Apt can be adsorbed on the MXenes nanosheets, and its fluorescence was quenched due to the FRET. After the composite probes were incubated with VP for 50 min, the POSS-PQDs-Apt binding with VP can be released from the surface of MXenes, and the signal recovered due to its higher affinity to the VP than MXenes. The fluorescence intensity from 519 nm emission of the system was measured at 480 nm excitation. Under In optimized conditions, the assay can determine VP in the concentration range 102 - 106 cfu/mL, and the detection limit (LOD) was 30 cfu/mL using fluorescence detection. The LOD is still 100 cfu/mL by naked eye detection which is proper for on-line monitoring VP in aquaculture water. This method was also used to detect VP in actual samples of seawater, the recovery of spiked samples was between 93% and 106%, and relative standard deviation (RSD) was between 2.7% and 6.7%. The result is consistent with the plate count. Therefore, this assay could provide a candidate platform for screening VP in aquaculture industry.

Graphical abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Yuhan Sun ND, Ma P, Liang Y, Zhu X, Wang Z (2019) Colorimetric aptasensor based on truncated aptamer and trivalent dnazyme for vibrio parahemolyticus determination. J Agric Food Chem 67:2313–2320. https://doi.org/10.1021/acs.jafc.8b06893

  2. 2.

    Farisa Banu S, Rubini D, Murugan R, Vadivel V, Gowrishankar S, Pandian SK, Nithyanand P (2018) Exploring the antivirulent and sea food preservation efficacy of essential oil combined with DNase on Vibrio parahaemolyticus. Lwt 95:107–115. https://doi.org/10.1016/j.lwt.2018.04.070

    CAS  Article  Google Scholar 

  3. 3.

    Liu Y, Zhong Q, Wang J, Lei S (2018) Enumeration of Vibrio parahaemolyticus in VBNC state by PMA-combined real-time quantitative PCR coupled with confirmation of respiratory activity. Food Control 91:85–91. https://doi.org/10.1016/j.foodcont.2018.03.037

    CAS  Article  Google Scholar 

  4. 4.

    Zhang Z, Liu H, Lou Y, Xiao L, Liao C, Malakar PK, Pan Y, Zhao Y (2015) Quantifying viable Vibrio parahaemolyticus and Listeria monocytogenes simultaneously in raw shrimp. Appl Microbiol Biotechnol 99(15):6451–6462. https://doi.org/10.1007/s00253-015-6715-x

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Wang T, Song X, Lin H, Hao T, Hu Y, Wang S, Su X, Guo Z (2019) A faraday cage-type immunosensor for dual-modal detection of Vibrio parahaemolyticus by electrochemiluminescence and anodic stripping voltammetry. Anal Chim Acta 1062:124–130. https://doi.org/10.1016/j.aca.2019.02.032

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Li R, Chiou J, Chan EW, Chen S (2016) A novel PCR-based approach for accurate identification of vibrio parahaemolyticus. Front Microbiol 7:44. https://doi.org/10.3389/fmicb.2016.00044

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Xu Y-G, Sun L-M, Wang Y-S, Chen P-P, Liu Z-M, Li Y-J, Tang L-J (2017) Simultaneous detection of Vibrio cholerae, Vibrio alginolyticus, Vibrio parahaemolyticus and Vibrio vulnificus in seafood using dual priming oligonucleotide (DPO) system-based multiplex PCR assay. Food Control 71:64–70. https://doi.org/10.1016/j.foodcont.2016.06.024

    CAS  Article  Google Scholar 

  8. 8.

    Liu N, Zou D, Dong D, Yang Z, Ao D, Liu W, Huang L (2017) Development of a multiplex loop-mediated isothermal amplification method for the simultaneous detection of Salmonella spp. and Vibrio parahaemolyticus. Sci Rep 7:45601. https://doi.org/10.1038/srep45601

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Shiga K, Gomi K, Nishimura M, Watanabe M, Nomura F, Kajiyama N (2013) Discrimination of methicillin-resistant Staphylococcus aureus from methicillin-susceptible Staphylococcus aureus or coagulase-negative staphylococci by detection of penicillin-binding protein 2 and penicillin-binding protein 2′ using a bioluminescent enzyme immunoassay. J Immunol Methods 388(1–2):40–45. https://doi.org/10.1016/j.jim.2012.11.012

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Song S, Wang X, Xu K, Xia G, Yang X (2019) Visualized detection of Vibrio parahaemolyticus in food samples using dual-functional aptamers and cut-assisted rolling circle amplification. J Agric Food Chem 67(4):1244–1253. https://doi.org/10.1021/acs.jafc.8b04913

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Shi J, Chan C, Pang Y, Ye W, Tian F, Lyu J, Zhang Y, Yang M (2015) A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron 67:595–600. https://doi.org/10.1016/j.bios.2014.09.059

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Ren D, Sun C, Huang Z, Luo Z, Zhou C, Li Y (2019) Sensors and Actuators B: Chemical 296. https://doi.org/10.1016/j.snb.2019.05.054

  13. 13.

    Zhao Y, Liu H, Jiang Y, Song S, Zhao Y, Zhang C, Xin J, Yang B, Lin Q (2018) Detection of various biomarkers and enzymes via a nanocluster-based fluorescence turn-on sensing platform. Anal Chem 90(24):14578–14585. https://doi.org/10.1021/acs.analchem.8b04691

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Wei Y, Deng X, Xie Z, Cai X, Liang S, Ma P, Hou Z, Cheng Z, Lin J (2017) Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv Funct Mater 27(39). https://doi.org/10.1002/adfm.201703535

  15. 15.

    Pan J, Quan LN, Zhao Y, Peng W, Murali B, Sarmah SP, Yuan M, Sinatra L, Alyami NM, Liu J, Yassitepe E, Yang Z, Voznyy O, Comin R, Hedhili MN, Mohammed OF, Lu ZH, Kim DH, Sargent EH, Bakr OM (2016) Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater 28(39):8718–8725. https://doi.org/10.1002/adma.201600784

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Zhang X, Xu B, Zhang J, Gao Y, Zheng Y, Wang K, Sun XW (2016) All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CspbBr3-Cspb2Br5 composites. Adv Funct Mater 26(25):4595–4600. https://doi.org/10.1002/adfm.201600958

    CAS  Article  Google Scholar 

  17. 17.

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H (2015) Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 27(44):7162–7167. https://doi.org/10.1002/adma.201502567

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Huang H, Chen B, Wang Z, Hung TF, Susha AS, Zhong H, Rogach AL (2016) Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem Sci 7(9):5699–5703. https://doi.org/10.1039/c6sc01758d

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Li F, Pei H, Wang L, Lu J, Gao J, Jiang B, Zhao X, Fan C (2013) Nanomaterial-based fluorescent DNA analysis: a comparative study of the quenching effects of graphene oxide, carbon nanotubes, and gold nanoparticles. Adv Funct Mater 23(33):4140–4148. https://doi.org/10.1002/adfm.201203816

    CAS  Article  Google Scholar 

  20. 20.

    Furukawa K, Ueno Y, Takamura M, Hibino H (2016) Graphene FRET aptasensor. ACS Sensors 1(6):710–716. https://doi.org/10.1021/acssensors.6b00191

    CAS  Article  Google Scholar 

  21. 21.

    Tian F, Lyu J, Shi J, Yang M (2017) Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosens Bioelectron 89(Pt 1):123–135. https://doi.org/10.1016/j.bios.2016.06.046

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Zhou J, Li Z, Ying M, Liu M, Wang X, Wang X, Cao L, Zhang H, Xu G (2018) Black phosphorus nanosheets for rapid microRNA detection. Nanoscale 10(11):5060–5064. https://doi.org/10.1039/c7nr08900g

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Yang Q, Zhou L, Wu YX, Zhang K, Cao Y, Zhou Y, Wu D, Hu F, Gan N (2018) A two dimensional metal-organic framework nanosheets-based fluorescence resonance energy transfer aptasensor with circular strand-replacement DNA polymerization target-triggered amplification strategy for homogenous detection of antibiotics. Anal Chim Acta 1020:1–8. https://doi.org/10.1016/j.aca.2018.02.058

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y (2018) Universal Ti3C2 mxenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal Chem 90(21):12737–12744. https://doi.org/10.1021/acs.analchem.8b03083

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Wang S, Song W, Wei S, Zeng S, Yang S, Lei C, Huang Y, Nie Z, Yao S (2019) Functional titanium carbide mxenes-loaded entropy-driven rna explorer for long noncoding rna pca3 imaging in live cells. Anal Chem 91(13):8622–8629. https://doi.org/10.1021/acs.analchem.9b02040

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Hu H, Wu L, Tan Y, Zhong Q, Chen M, Qiu Y, Yang D, Sun B, Zhang Q, Yin Y (2018) Interfacial synthesis of highly stable CsPbX3/oxide Janus nanoparticles. J Am Chem Soc 140(1):406–412. https://doi.org/10.1021/jacs.7b11003

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H (2017) A two-dimensional lamellar membrane: Mxene nanosheet stacks. Angew Chem Int Ed 56(7):1825–1829. https://doi.org/10.1002/anie.201609306

    CAS  Article  Google Scholar 

  28. 28.

    Xu F, Feng X, Sui X, Lin H, Han Y (2017) Inactivation mechanism of Vibrio parahaemolyticus via supercritical carbon dioxide treatment. Food Res Int 100(Pt 2):282–288. https://doi.org/10.1016/j.foodres.2017.08.038

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Guo Z, Jia Y, Song X, Lu J, Lu X, Liu B, Han J, Huang Y, Zhang J, Chen T (2018) Giant gold nanowire vesicle-based colorimetric and SERS dual-mode immunosensor for ultrasensitive detection of vibrio parahemolyticus. Anal Chem 90(10):6124–6130. https://doi.org/10.1021/acs.analchem.8b00292

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Zhang Z, Xiao L, Lou Y, Jin M, Liao C, Malakar PK, Pan Y, Zhao Y (2015) Development of a multiplex real-time PCR method for simultaneous detection of Vibrio parahaemolyticus, Listeria monocytogenes and Salmonella spp. in raw shrimp. Food Control 51:31–36. https://doi.org/10.1016/j.foodcont.2014.11.007

    CAS  Article  Google Scholar 

  31. 31.

    Sun C, Wang Z-W, Li J-X, Fan W-L, Qiao X-Y, Liu Z-M, Li S-L, Tang L-J, Li Y-J, Xu Y-G (2016) A rapid and sensitive method for simultaneous screening of nine foodborne pathogens using high-performance liquid chromatography assay. Food Anal Methods 10(4):1117–1127. https://doi.org/10.1007/s12161-016-0672-6

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number: 21974074), Natural Science Foundation of Ningbo (grant number: 2019A610013; 2019A610142; 2019A610184; 2019A610197; 2018A610182; 2018A610221), Zhejiang Province Welfare Technology Applied Research Project (grant numbers: LY19B050001; LY18B070004), Zhejiang Province Public Welfare Technology Application Research Analysis Test Plan (grant number: LGC19B070003; LGC20B050006), Guangdong Provincial Key Laboratory of Environmental Pollution and Health, 2018 Annual Open Fund (GDKLEEH201807), and K. C. Wong Magna Fund in Ningbo University.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tianhua Li or Ning Gan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3.68 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Wang, W., Wang, J. et al. A turn-on–type fluorescence resonance energy transfer aptasensor for vibrio detection using aptamer-modified polyhedral oligomeric silsesquioxane-perovskite quantum dots/Ti3C2 MXenes composite probes. Microchim Acta 188, 45 (2021). https://doi.org/10.1007/s00604-020-04679-9

Download citation

Keywords

  • Vibrio parahaemolyticus
  • Fluorescence resonance energy transfer
  • Polyhedral oligomeric silsesquioxane-perovskite
  • Quantum dots
  • Ti3C2 MXenes
  • Turn-on–type aptasensor