Skip to main content
Log in

Poly(indole-5-carboxylic acid)/reduced graphene oxide/gold nanoparticles/phage-based electrochemical biosensor for highly specific detection of Yersinia pseudotuberculosis

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Yersinia pseudotuberculosis is an enteric bacterium causing yersiniosis in humans. The existing Yersinia pseudotuberculosis detection methods are time-consuming, requiring a sample pretreatment step, and are unable to discriminate live/dead cells. The current work reports a phage-based electrochemical biosensor for rapid and specific detection of Yersinia pseudotuberculosis. The conductive poly(indole-5-carboxylic acid), reduced graphene oxide, and gold nanoparticles are applied for surface modification of the electrode. They possess ultra-high redox stability and retain 97.7% of current response after performing 50 consecutive cycles of cyclic voltammetry.The specific bacteriophages vB_YepM_ZN18 we isolated from hospital sewage water were immobilized on modified electrodes by Au-NH2 bond between gold nanoparticles and phages. The biosensor fabricated with nanomaterials and phages were utilized to detect Yersinia pseudotuberculosis successfully with detection range of 5.30 × 102 to 1.05 × 107 CFU mL−1, detection limit of 3 CFU mL−1, and assay time of 35 min. Moreover, the biosensor can specifically detect live Yersinia pseudotuberculosis without responding to phage-non-host bacteria and dead Yersinia pseudotuberculosis cells. These results suggest that the proposed biosensor is a promising tool for the rapid and selective detection of Yersinia pseudotuberculosis in food, water, and clinical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wielkoszynski T, Moghaddam A, Bäckman A, Broden J, Piotrowski R, Mond-Paszek R, Kozarenko A, Ny T, Wilczynska M (2018) Novel diagnostic ELISA test for discrimination between infections with Yersinia enterocolitica and Yersinia pseudotuberculosis. Eur J Clin Microbiol Infect Dis 37:2301–2306. https://doi.org/10.1007/s10096-018-3373-9

    Article  CAS  PubMed  Google Scholar 

  2. Laukkanen R, Martínez PO, Siekkinen KM et al (2008) Transmission of Yersinia pseudotuberculosis in the pork production chain from farm to slaughterhouse. Appl Environ Microbiol 74:5444–5450. https://doi.org/10.1128/AEM.02664-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Farooq U, Yang Q, Ullah MW, Wang S (2018) Bacterial biosensing : recent advances in phage-based bioassays and biosensors. Biosens Bioelectron 118:204–216. https://doi.org/10.1016/j.bios.2018.07.058

    Article  CAS  PubMed  Google Scholar 

  4. Thoerner P, Bin Kingombe CI, Wassenaar TM et al (2003) PCR detection of virulence genes in Yersinia enterocolitica and Yersinia pseudotuberculosis and investigation of virulence gene distribution. Appl Environ Microbiol 69:1810–1816. https://doi.org/10.1128/AEM.69.3.1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fukushima H, Tsunomori Y, Seki R (2003) Duplex real-time SYBR green PCR assays for detection of 17 species of food- or waterborne pathogens in stools. J Clin Microbiol 41:5134–5146. https://doi.org/10.1128/JCM.41.11.5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Horisaka T, Fujita K, Iwata T, Nakadai A, Okatani AT, Horikita T, Taniguchi T, Honda E, Yokomizo Y, Hayashidani H (2004) Sensitive and specific detection of Yersinia pseudotuberculosis by loop-mediated isothermal amplification. J Clin Microbiol 42:5349–5352. https://doi.org/10.1128/JCM.42.11.5349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Hołyst R (2018) Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov Today 23:448–455. https://doi.org/10.1016/j.drudis.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  8. Savas S, Altintas Z (2019) Graphene quantum dots as nanozymes for electrochemical sensing of yersinia enterocolitica in milk and human serum. Materials (Basel) 12:2189. https://doi.org/10.3390/ma12132189

    Article  CAS  Google Scholar 

  9. Sobhan A, Lee J, Park MK, Oh JH (2019) Rapid detection of Yersinia enterocolitica using a single–walled carbon nanotube-based biosensor for Kimchi product. Lwt 108:48–54. https://doi.org/10.1016/j.lwt.2019.03.037

    Article  CAS  Google Scholar 

  10. Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW III, Rowland CE, Breger JC, Medintz IL (2018) Detecting biothreat agents: from current diagnostics to developing sensor technologies. ACS Sensors 3:1894–2024. https://doi.org/10.1021/acssensors.8b00420

    Article  CAS  PubMed  Google Scholar 

  11. Justino CIL, Freitas AC, Pereira R, Duarte AC, Rocha Santos TAP (2015) Recent developments in recognition elements for chemical sensors and biosensors. TrAC - Trends Anal Chem 68:2–17. https://doi.org/10.1016/j.trac.2015.03.006

    Article  CAS  Google Scholar 

  12. Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors (Switzerland) 13:1763–1786. https://doi.org/10.3390/s130201763

    Article  CAS  Google Scholar 

  13. Rippa M, Castagna R, Pannico M, Musto P, Borriello G, Paradiso R, Galiero G, Bolletti Censi S, Zhou J, Zyss J, Petti L (2017) Octupolar metastructures for a highly sensitive, rapid, and reproducible phage-based detection of bacterial pathogens by surface-enhanced Raman scattering. ACS Sensors 2:947–954. https://doi.org/10.1021/acssensors.7b00195

    Article  CAS  PubMed  Google Scholar 

  14. Qiu JD, Liang RP, Wang R, Fan LX, Chen YW, Xia XH (2009) A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix. Biosens Bioelectron 25:852–857. https://doi.org/10.1016/j.bios.2009.08.048

    Article  CAS  PubMed  Google Scholar 

  15. Dong XX, Yang JY, Luo L, Zhang YF, Mao C, Sun YM, Lei HT, Shen YD, Beier RC, Xu ZL (2017) Portable amperometric immunosensor for histamine detection using Prussian blue-chitosan-gold nanoparticle nanocomposite films. Biosens Bioelectron 98:305–309. https://doi.org/10.1016/j.bios.2017.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang D, Fu L, Liao L, Liu N, Dai B, Zhang C (2012) Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. Nano Res 5:875–887. https://doi.org/10.1007/s12274-012-0271-9

    Article  CAS  Google Scholar 

  17. Kang D, Ricci F, White RJ, Plaxco KW (2016) Survey of redox-active moieties for application in multiplexed electrochemical biosensors. Anal Chem 88:10452–10458. https://doi.org/10.1021/acs.analchem.6b02376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li X, Xia J, Zhang S (2008) Label-free detection of DNA hybridization based on poly(indole-5-carboxylic acid) conducting polymer. Anal Chim Acta 622:104–110. https://doi.org/10.1016/j.aca.2008.05.044

    Article  CAS  PubMed  Google Scholar 

  19. Zhang W (2016) Poly(indole-5-carboxylic acid)-functionalized ZnO nanocomposite for electrochemical DNA hybridization detection. J Solid State Electrochem 20:499–506. https://doi.org/10.1007/s10008-015-3071-9

    Article  CAS  Google Scholar 

  20. Yang T, Ren X, Yang M, Li X, He K, Rao A, Wan Y, Yang H, Wang S, Luo Z (2019) A highly sensitive label-free electrochemical immunosensor based on poly(indole-5-carboxylicacid) with ultra-high redox stability. Biosens Bioelectron 141:111406. https://doi.org/10.1016/j.bios.2019.111406

    Article  CAS  PubMed  Google Scholar 

  21. Zhang T, Chen Y, Huang W, Wang Y, Hu X (2018) A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability. Sensors Actuators B Chem 276:362–369. https://doi.org/10.1016/j.snb.2018.08.132

    Article  CAS  Google Scholar 

  22. Santos MA (1991) An improved method for the small scale preparation of bacteriophage DNA based on phage precipitation by zinc chloride. Nucleic Acids Res 19:5442. https://doi.org/10.1093/nar/19.19.5442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou Y, Marar A, Kner P, Ramasamy RP (2017) Charge-directed immobilization of bacteriophage on nanostructured electrode for whole-cell electrochemical biosensors. Anal Chem 89:5734–5741. https://doi.org/10.1021/acs.analchem.6b03751

    Article  CAS  PubMed  Google Scholar 

  24. Schwudke D, Ergin A, Michael K, Volkmar S, Appel B, Knabner D, Konietzny A, Strauch E (2008) Broad-host-range Yersinia phage PY100: genome sequence, proteome analysis of virions, and DNA packaging strategy. J Bacteriol 190:332–342. https://doi.org/10.1128/JB.01402-07

    Article  CAS  PubMed  Google Scholar 

  25. Rashid MH, Revazishvili T, Dean T, Butani A, Verratti K, Bishop-Lilly KA, Sozhamannan S, Sulakvelidze A, Rajanna C (2012) A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium. Bacteriophage 2:168–177. https://doi.org/10.4161/bact.22240

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hu Y, Hu D, Ming S, Duan X, Zhao F, Hou J, Xu J, Jiang F (2016) Synthesis of polyether-bridged bithiophenes and their electrochemical polymerization to electrochromic property. Electrochim Acta 189:64–73. https://doi.org/10.1016/j.electacta.2015.12.091

    Article  CAS  Google Scholar 

  27. Ma X, Zhou W, Mo D, Hou J, Xu J (2015) Effect of substituent position on electrodeposition, morphology, and capacitance performance of polyindole bearing a carboxylic group. Electrochim Acta 176:1302–1312. https://doi.org/10.1016/j.electacta.2015.07.148

    Article  CAS  Google Scholar 

  28. Liu H, Zhen S, Ming S, Lin K, Gu H, Zhao Y, Li Y, Lu B, Xu J (2016) Furan and pyridinechalcogenodiazole-based π-conjugated systems via a donor-acceptor approach. J Solid State Electrochem 20:2337–2349. https://doi.org/10.1007/s10008-016-3253-0

    Article  CAS  Google Scholar 

  29. Gurunathan S, Han JW, Park JH, Kim JH (2014) A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res Lett 9:1–11. https://doi.org/10.1186/1556-276X-9-248

    Article  CAS  Google Scholar 

  30. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N Y 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  31. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114. https://doi.org/10.1039/B917705A

    Article  CAS  Google Scholar 

  32. Godipurge SS, Yallappa S, Biradar NJ, Biradar JS, Dhananjaya BL, Hegde G, Jagadish K, Hegde G (2016) A facile and green strategy for the synthesis of Au, Ag and Au–Ag alloy nanoparticles using aerial parts of R. hypocrateriformis extract and their biological evaluation. Enzym Microb Technol 95:174–184. https://doi.org/10.1016/j.enzmictec.2016.08.006

    Article  CAS  Google Scholar 

  33. Li Y, Xie G, Qiu J, Zhou D, Gou D, Tao Y, Li Y, Chen H (2018) A new biosensor based on the recognition of phages and the signal amplification of organic-inorganic hybrid nanoflowers for discriminating and quantitating live pathogenic bacteria in urine. Sensors Actuators B Chem 258:803–812. https://doi.org/10.1016/j.snb.2017.11.155

    Article  CAS  Google Scholar 

  34. Richter Ł, Bielec K, Leśniewski A, Łoś M, Paczesny J, Hołyst R (2017) Dense layer of bacteriophages ordered in alternating electric field and immobilized by surface chemical modification as sensing element for bacteria detection. ACS Appl Mater Interfaces 9:19622–19629. https://doi.org/10.1021/acsami.7b03497

    Article  CAS  PubMed  Google Scholar 

  35. Bhardwaj N, Bhardwaj SK, Mehta J, Mohanta GC, Deep A (2016) Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae). Anal Biochem 505:18–25. https://doi.org/10.1016/j.ab.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  36. Chauhan N, Narang J, Pundir CS (2011) Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosens Bioelectron 29:82–88. https://doi.org/10.1016/j.bios.2011.07.070

    Article  CAS  PubMed  Google Scholar 

  37. Zhao D, Wang Y, Nie G (2016) Electrochemical immunosensor for the carcinoembryonic antigen based on a nanocomposite consisting of reduced graphene oxide, gold nanoparticles and poly(indole-6-carboxylic acid). Microchim Acta 183:2925–2932. https://doi.org/10.1007/s00604-016-1940-2

    Article  CAS  Google Scholar 

  38. Liu X, Li WJ, Li L, Yang Y, Mao LG, Peng Z (2014) A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sensors Actuators B Chem 191:408–414. https://doi.org/10.1016/j.snb.2013.10.033

    Article  CAS  Google Scholar 

  39. Miao X, Li Z, Zhu A, Feng Z, Tian J, Peng X (2016) Ultrasensitive electrochemical detection of protein tyrosine kinase-7 by gold nanoparticles and methylene blue assisted signal amplification. Biosens Bioelectron 83:39–44. https://doi.org/10.1016/j.bios.2016.04.032

    Article  CAS  PubMed  Google Scholar 

  40. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074. https://doi.org/10.1016/j.bios.2009.09.024

    Article  CAS  PubMed  Google Scholar 

  41. Yang T, Gao Y, Liu Z, Xu J, Lu L, Yu Y (2017) Three-dimensional gold nanoparticles/prussian blue-poly(3,4-ethylenedioxythiophene) nanocomposite as novel redox matrix for label-free electrochemical immunoassay of carcinoembryonic antigen. Sensors Actuators B Chem 239:76–84. https://doi.org/10.1016/j.snb.2016.08.001

    Article  CAS  Google Scholar 

  42. Talbi H, Billaud D, Louarn G, Pron A (2001) In-situ spectroscopic investigations of the redox behavior of poly ( indole-5-carboxylic-acid ) modified electrodes in acidic aqueous solutions. Spectrochim Acta Part A 57:423–433

    Article  CAS  Google Scholar 

  43. Han L, Liu P, Petrenko VA, Liu AH (2016) A label-free electrochemical impedance cytosensor based on specific peptide-fused phage selected from landscape phage library. Sci Rep 6:1–10. https://doi.org/10.1038/srep22199

    Article  CAS  Google Scholar 

  44. Moghtader F, Congur G, Zareie HM, Erdem A, Piskin E (2016) Impedimetric detection of pathogenic bacteria with bacteriophages using gold nanorod deposited graphite electrodes. RSC Adv 6:97832–97839. https://doi.org/10.1039/C6RA18884B

    Article  CAS  Google Scholar 

  45. Zhang X, Xie G, Gou D, Luo P, Yao Y, Chen H (2019) A novel enzyme-free electrochemical biosensor for rapid detection of Pseudomonas aeruginosa based on high catalytic cu-ZrMOF and conductive super P. Biosens Bioelectron 142:111486. https://doi.org/10.1016/j.bios.2019.111486

    Article  CAS  PubMed  Google Scholar 

  46. Bhardwaj J, Devarakonda S, Kumar S, Jang J (2017) Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sensors Actuators B Chem 253:115–123. https://doi.org/10.1016/j.snb.2017.06.108

    Article  CAS  Google Scholar 

  47. Wang D, Hinkley T, Chen J, Talbert JN, Nugen SR (2019) Phage based electrochemical detection of: Escherichia coli in drinking water using affinity reporter probes. Analyst 144:1345–1352. https://doi.org/10.1039/c8an01850b

    Article  CAS  PubMed  Google Scholar 

  48. Bartlett PN, Dawson DH, Farrington J (1992) Electrochemically polymerised films of 5-carboxyinodele. Preparation and properties. J Chem Soc Faraday Trans 88:2685–2695. https://doi.org/10.1039/FT9928802685

    Article  CAS  Google Scholar 

  49. Mahato K, Srivastava A, Chandra P (2017) Paper based diagnostics for personalized health care: emerging technologies and commercial aspects. Biosens Bioelectron 96:246–259. https://doi.org/10.1016/j.bios.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  50. Kageyama T, Ogasawara A, Fukuhara R, Narita Y, Miwa N, Kamanaka Y, Abe M, Kumazaki K, Maeda N, Suzuki J, Gotoh S, Matsubayashi K, Hashimoto C, Kato A, Matsubayashi N (2002) Yersinia pseudotuberculosis infection in breeding monkeys: detection and analysis of strain diversity by PCR. J Med Primatol 31:129–135. https://doi.org/10.1034/j.1600-0684.2002.01034.x

    Article  CAS  PubMed  Google Scholar 

  51. Thisted Lambertz S, Nilsson C, Hallanvuo S (2008) TaqMan-based real-time PCR method for detection of Yersinia pseudotuberculosis in food. Appl Environ Microbiol 74:6465–6469. https://doi.org/10.1128/AEM.01459-08

    Article  CAS  PubMed  Google Scholar 

  52. Matero P, Pasanen T, Laukkanen R et al (2009) Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis. Apmis 117:34–44. https://doi.org/10.1111/j.1600-0463.2008.00013.x

    Article  CAS  PubMed  Google Scholar 

  53. Zhang H, Feng J, Xue R, du XJ, Lu X, Wang S (2014) Loop-mediated isothermal amplification assays for detecting yersinia pseudotuberculosis in milk powders. J Food Sci 79:967–971. https://doi.org/10.1111/1750-3841.12436

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China under Grant 2017YFC1104402. The authors also thank the Analytical and Testing Center of Huazhong University of Science and Technology for SEM, EDX, Raman, TEM, and FTIR analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meiying Gao or Shenqi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2172 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Deng, S., Xu, J. et al. Poly(indole-5-carboxylic acid)/reduced graphene oxide/gold nanoparticles/phage-based electrochemical biosensor for highly specific detection of Yersinia pseudotuberculosis. Microchim Acta 188, 107 (2021). https://doi.org/10.1007/s00604-020-04676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04676-y

Keywords

Navigation