Skip to main content
Log in

Ratiometric fluorescent nanoprobe based on CdTe/SiO2/folic acid/silver nanoparticles core-shell-satellite assembly for determination of 6-mercaptopurine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive and robust fluorescent assay of 6-MP is described which relies on the facile assembly of a fluorescence nanoprobe by design of silica nanosphere encapsulated CdTe quantum dots (CdTe QDs) as scaffold, coupling with chemically tethered folic acid (FA)–protected silver nanoparticles (AgNPs) that function as responsive element. In this way a stable ternary core-shell-satellite nanostructure with dual-emission signals can be established. On binding to the target molecules, 6-MP, FA molecules initially occupied by AgNPs are liberated to give dose-dependent fluorescence emission, which can further form a self-calibration ratiometric fluorescence assay using CdTe QDs as an internal reference. The nanoprobe color vividly changes from red to blue, enabling the direct visual detection. The linear concentration range is 0.15~50 μM with the detection limit of 67 nM. By virtue of the favorable selectivity and robust assays, the nanoprobe was applied to 6-MP detection in urine samples, with recoveries from 97.3 to 106% and relative standard deviations (RSD) less than 5%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Qiu J, Cheng R, Zhang J, Sun H, Deng C, Meng F, Zhong Z (2017) Glutathione-sensitive hyaluronic acid-mercaptopurine prodrug linked via carbonyl vinyl sulfide: a robust and CD44-targeted nanomedicine for leukemia. Biomacromolecules 18:3207–3214

    CAS  PubMed  Google Scholar 

  2. Dieck CL, Tzoneva G, Forouhar F, Carpenter Z, Alberto AI, Marta SM, Renate KS, Lew S, Seetharaman J, Tong L, Ferrando AA (2018) Structure and mechanisms of NT5C2 mutations driving thiopurine resistance in relapsed lymphoblastic leukemia. Cancer Cell 34:136–147

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Boer NKH, Laurent PB, Jharap B, Sanderson JD, Meijer B, Atreya I, Barclay ML, Colombel JF, Lopez A, Beaugerie L, Marinaki AM, Bodegraven AA, Neurath MF (2018) Thiopurines in inflammatory bowel disease: new findings and perspectives. J Crohns Colitis 12:610–620

    PubMed  Google Scholar 

  4. Grosen A, Nersting J, Bungum M, Christensen LA, Schmiegelow K, Spanò M, Julsgaard M, Cordelli E, Leter G, Larsen PB, Hvas CL, Kelsen J (2019) Sperm DNA integrity is unaffected by thiopurine treatment in men with inflammatory bowel disease. J Crohns Colitis 13:3–11

    PubMed  Google Scholar 

  5. Sahasranaman S, Howard D, Roy S (2008) Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 64:753–767

    CAS  PubMed  Google Scholar 

  6. Kumar GP, Sanganal JS, Phani AR, Manohara C, Tripathi SM, Raghavendra HL, Janardhana PB, Amaresha S, Swamy KB, Prasad RG (2015) Anti-cancerous efficacy and pharmacokinetics of 6-mercaptopurine loaded chitosan nanoparticles. Pharmacol Res 100:47–57

    CAS  PubMed  Google Scholar 

  7. Li AP, Peng JD, Zhou M, Zhang J (2016) Resonance light scattering determination of 6-mercaptopurine coupled with HPLC technique. Spectrochim Acta Mol Biomol 154:1–7

    CAS  Google Scholar 

  8. Brusač E, Jeličić ML, Klarić DA, Mornar A (2019) Miniaturized shake-flask HPLC method for determination of distribution coefficient of drugs used in inflammatory bowel diseases. Acta Pharma 69:649–660

    Google Scholar 

  9. Hofmann U, Heinkele G, Angelberger S, Schaeffeler E, Lichtenberger C, Jaeger S, Reinisch W, Schwab M (2012) Simultaneous quantification of eleven thiopurine nucleotides by liquid chromatography-tandem mass spectrometry. Anal Chem 84:1294–1301

    CAS  PubMed  Google Scholar 

  10. Kumar A, Pathak PK, Prasad BB (2019) Electrocatalytic imprinted polymer of N-doped hollow carbon nanosphere-palladium nanocomposite for ultratrace detection of anticancer drug 6-mercaptopurine. ACS Appl Mater Interfaces 11:16065–16074

    CAS  PubMed  Google Scholar 

  11. Karimi-Maleh H, Shojaei AF, Tabatabaeian K, Karimi F, Shakeri S, Moradi R (2016) Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens Bioelectron 86:879–884

    CAS  PubMed  Google Scholar 

  12. Biparva P, Abedirad S, Kazemi S (2015) Silver nanoparticles enhanced a novel TCPO-H2O2-safranin O chemiluminescence system for determination of 6-mercaptopurine. Spectrochim Acta Mol Biomol 145:454–460

    CAS  Google Scholar 

  13. Du J, Wang Y, Zhang W (2012) Label-free, non-derivatization CRET detection platform for 6-mercaptopurine based on the distance-dependent optical properties of gold nanoparticles. Chemistry 18:8540–8546

    CAS  PubMed  Google Scholar 

  14. Han G, Liu R, Han MY, Jiang C, Wang J, Du S, Liu B, Zhang Z (2014) Label-free surface-enhanced Raman scattering imaging to monitor the metabolism of antitumor drug 6-mercaptopurine in living cells. Anal Chem 86:11503–11507

    CAS  PubMed  Google Scholar 

  15. Zhang F, Liu H, Liu Q, Su X (2018) An enzymatic ratiometric fluorescence assay for 6-mercaptopurine by using MoS2 quantum dots. Microchim Acta 185:540

    Google Scholar 

  16. Li Z, Wang Y, Ni Y, Kokot S (2015) Fluorescence analysis of 6-mercaptopurine with the use of a nano-composite consisting of BSA-capped Au nano-clusters and core-shell Fe3O4-SiO2 nanoparticles. Biosens Bioelectron 70:246–253

    CAS  PubMed  Google Scholar 

  17. Han Y, Chen J, Li Z, Chen H, Qiu H (2020) Recent progress and prospects of alkaline phosphatase biosensor based on fluorescence strategy. Biosens Bioelectron 148:111811

    CAS  PubMed  Google Scholar 

  18. Zhang X, Hu Y, Yang X, Tang Y, Han S, Kang A, Deng H, Chi Y, Zhu D, Lu Y (2019) FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens Bioelectron 138:111314

    CAS  PubMed  Google Scholar 

  19. He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y (2019) Tumor targeting strategies of smart fluorescent nanoparticles and their applications in cancer diagnosis and treatment. Adv Mater 31:1902409

    CAS  Google Scholar 

  20. Li J, Pu K (2019) Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 48:38–71

    CAS  PubMed  Google Scholar 

  21. Pu F, Ren J, Qu X (2018) Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chem Soc Rev 47:1285–1306

    CAS  PubMed  Google Scholar 

  22. Emrani AS, Danesh NM, Ramezani M, Taghdisi SM, Abnous K (2016) A novel fluorescent aptasensor based on hairpin structure of complementary strand of aptamer and nanoparticles as a signal amplification approach for ultrasensitive detection of cocaine. Biosens Bioelectron 79:288–293

    CAS  PubMed  Google Scholar 

  23. Yi H, Yan Z, Wang L, Zhou X, Yan R, Zhang D, Shen G, Zhou S (2019) Fluorometric determination for ofloxacin by using an aptamer and SYBR green I. Microchim Acta 186:668

    CAS  Google Scholar 

  24. Dehghani S, Danesh NM, Ramezani M, Alibolandi M, Lavaee P, Nejabat M, Abnous K, Taghdisi SM (2018) A label-free fluorescent aptasensor for detection of kanamycin based on dsDNA-capped mesoporous silica nanoparticles and Rhodamine B. Anal Chim Acta 1030:142–147

    CAS  PubMed  Google Scholar 

  25. Ling K, Jiang H, Li Y, Tao X, Qiu C, Li FR (2016) A self-assembling RNA aptamer-based graphene oxide sensor for the turn-on detection of theophylline in serum. Biosens Bioelectron 86:8–13

    CAS  PubMed  Google Scholar 

  26. Onoshima D, Yukawa H, Baba Y (2015) Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 95:2–14

    CAS  PubMed  Google Scholar 

  27. Sheng E, Lu Y, Tan Y, Xiao Y, Li Z, Dai Z (2020) Ratiometric fluorescent quantum dot-based biosensor for chlorothalonil detection via an inner-filter effect. Anal Chem 92:4364–4370

    CAS  PubMed  Google Scholar 

  28. Chen B, Ma J, Yang T, Chen L, Gao PF, Huang CZ (2017) A portable RGB sensing gadget for sensitive detection of Hg2+ using cysteamine-capped QDs as fluorescence probe. Biosens Bioelectron 98:36–40

    CAS  PubMed  Google Scholar 

  29. Zhang L, Chen L (2018) Visual detection of melamine by using a ratiometric fluorescent probe consisting of a red emitting CdTe core and a green emitting CdTe shell coated with a molecularly imprinted polymer. Microchim Acta 185:135

    Google Scholar 

  30. Xia N, Zhou B, Huang N, Jiang M, Zhang J, Liu L (2016) Visual and fluorescent assays for selective detection of β-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Biosens Bioelectron 85:625–632

    CAS  PubMed  Google Scholar 

  31. Raksawong P, Nurerk P, Chullasat K, Kanatharana P, Bunkoed O (2019) A polypyrrole doped with fluorescent CdTe quantum dots and incorporated into molecularly imprinted silica for fluorometric determination of ampicillin. Mikrochim Acta 186:338

    PubMed  Google Scholar 

  32. Wu Y, Wang Q, Wu T, Liu W, Nan H, Xu S, Shen Y (2018) Detection and imaging of hydrogen sulfide in lysosomes of living cells with activatable fluorescent quantum dots. ACS Appl Mater Interfaces 10:43472–43481

    CAS  PubMed  Google Scholar 

  33. Filali S, Pirot F, Miossec P (2020) Biological applications and toxicity minimization of semiconductor quantum dots. Trends Biotechnol 38:163–177

    CAS  PubMed  Google Scholar 

  34. Park SH, Kwon N, Lee JH, Yoon J, Shin I (2020) Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev 49:143–179

    CAS  PubMed  Google Scholar 

  35. Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X (2018) Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 47:2873–2920

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee MH, Kim JS, Sessler JL (2015) Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev 44:4185–4191

    CAS  PubMed  Google Scholar 

  37. Yan X, Li H, Zheng W, Su X (2015) Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe. Anal Chem 87:8904–8909

    CAS  PubMed  Google Scholar 

  38. Amin N, Afkhami A, Hosseinzadeh L, Akbarzadeh F, Madrakian T, Nabiabad HS (2020) Ratiometric bioassay and visualization of dopamine β-hydroxylase in brain cells utilizing a nanohybrid fluorescence probe. Anal Chim Acta 1105:187–196

    CAS  PubMed  Google Scholar 

  39. Pang S, Liu S (2020) Dual-emission carbon dots for ratiometric detection of Fe ions and acid phosphatase. Anal Chim Acta 1105:155–161

    CAS  PubMed  Google Scholar 

  40. Chen X, Xu K, Li J, Yang M, Li X, Chen Q, Lu C, Yang H (2020) Switch-conversional ratiometric fluorescence biosensor for miRNA detection. Biosens Bioelectron 155:112104

    CAS  PubMed  Google Scholar 

  41. Wang K, Qian J, Jiang D, Yang Z, Du X, Wang K (2015) Onsite naked eye determination of cysteine and homocysteine using quencher displacement-induced fluorescence recovery of the dual-emission hybrid probes with desired intensity ratio. Biosens Bioelectron 65:83–90

    PubMed  Google Scholar 

  42. Su D, Yang X, Xia Q, Zhang Q, Qu F (2014) Folic acid functionalized silver nanoparticles with sensitivity and selectivity colorimetric and fluorescent detection for Hg2+ and efficient catalysis. Nanotechnology 25(35):355702

    PubMed  Google Scholar 

  43. Qian J, Hua M, Wang C, Wang K, Liu Q, Hao N, Wang K (2016) Fabrication of l-cysteine-capped CdTe quantum dots based ratiometric fluorescence nanosensor for onsite visual determination of trace TNT explosive. Anal Chim Acta 946:80–87

    CAS  PubMed  Google Scholar 

  44. Chang S, Wu X, Lan J, Li Z, Zhang X, Zhang H (2019) γ-Radiation enhanced luminescence of thiol-capped quantum dots in aqueous solution. Nanomaterials 9:506–518

    CAS  PubMed Central  Google Scholar 

  45. Zhang Z, Jia J, Ma Y, Weng J, Sun Y, Sun L (2011) Microwave-assisted one-step rapid synthesis of folic acid modified gold nanoparticles for cancer cell targeting and detection. Med Chem Commun 2:1079–1082

    CAS  Google Scholar 

  46. Li W, Teng C, Sun Y, Cai L, Xu JL, Sun M, Li X, Yang X, Xiang L, Xie D, Ren T (2018) Sprayed, scalable, wearable, and portable NO2 sensor array using fully flexible AgNPs-all-carbon nanostructures. ACS Appl Mater Interfaces 10:34485–34493

    CAS  PubMed  Google Scholar 

  47. Li DY, Wang YZ, Zhao XL, He XW, Li WY, Zhang YK (2014) Facile synthesis of ionic liquid functionalized silica-capped CdTe quantum dots for selective recognition and detection of hemoproteins. J Mater Chem B 2:5659–5665

    CAS  PubMed  Google Scholar 

  48. Luo Z, Qi Q, Zhang L, Zeng R, Su L, Tang D (2019) Branched polyethylenimine-modified upconversion nanohybrid-mediated photoelectrochemical immunoassay with synergistic effect of dual-purpose copper ions. Anal Chem 91:4149–4156

    CAS  PubMed  Google Scholar 

  49. Wang YQ, Zhao T, He XW, Li WY, Zhang YK (2014) A novel core-satellite CdTe/silica/Au NCs hybrid sphere as dual-emission ratiometric fluorescent probe for Cu2+. Biosens Bioelectron 51:40–46

    CAS  PubMed  Google Scholar 

  50. Diamai S, Warjri W, Saha D, Negi DPS (2018) Sensitive determination of 6-mercaptopurine based on the aggregation of phenylalanine-capped gold nanoparticles. Colloids Surf A Physicochem Eng Asp 538:593–599

    CAS  Google Scholar 

  51. Keyvanfard M, Khosravi V, Karimi-Maleh H, Alizad K, Rezaei B (2013) Voltammetric determination of 6-mercaptopurine using a multiwall carbon nanotubes paste electrode in the presence of isoprenaline as a mediator. J Mol Liq 177:182–189

    CAS  Google Scholar 

  52. Ensafi AA, Karimi-Maleh H (2012) Determination of 6-mercaptopurine in the presence of uric acid using modified multiwall carbon nanotubes-TiO2 as a voltammetric sensor. Drug Test Anal 4:970–977

    CAS  PubMed  Google Scholar 

  53. Zakrzewski R, Borowczyk K, Łuczak A, Młynarski W, Trelińska J (2013) Determination of urinary 6-mercaptopurine and three of its metabolites by HPLC-UV coupled with the iodine-azide reaction. Bioanalysis 5:869–877

    CAS  PubMed  Google Scholar 

  54. Deng HH, Huang KY, Zhuang QQ, Peng HP, Liu YH, Xia XH, Chen W (2018) Preparation of strongly fluorescent water-soluble dithiothreitol modified gold nanoclusters coated with carboxychitosan, and their application to fluorometric determination of the immunosuppressive 6-mercaptopurine. Microchim Acta 185:400

    Google Scholar 

  55. Jin M, Mou ZL, Zhang RL, Liang SS, Zhang ZQ (2017) An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine. Biosens Bioelectron 91:162–168

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors are thankful to the financial support from National Natural Science Foundation of China (21665004, 82060647), Guangxi Natural Science Foundation (2018GXNSFAA138022), Guangxi Medical University Training Program for Distinguished Young Scholars, and Guangxi First-class Discipline Project for Pharmaceutical Sciences (No. GXFCDP-PS-2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Xinchun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, S., Zhou, C. et al. Ratiometric fluorescent nanoprobe based on CdTe/SiO2/folic acid/silver nanoparticles core-shell-satellite assembly for determination of 6-mercaptopurine. Microchim Acta 187, 665 (2020). https://doi.org/10.1007/s00604-020-04628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04628-6

Keywords

Navigation