Skip to main content
Log in

Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel chiral sensing platform, 6-O-α-maltosyl-β-cyclodextrin (Mal-βCD)-based film, is proposed for selective electrochemical recognition of tyrosine (Tyr) enantiomers. Black phosphorus nanosheets (BP NSs) and Mal-βCD modified glassy carbon electrode (Mal-βCD/BP NSs/GCE) were prepared by a layer-to-layer drop-casting method, and the platform was easy to fabricate and facile to operate. It is proposed that the amino and hydroxyl groups of the Tyr enantiomers and the chiral hydroxyl groups of Mal-βCD selectively form intermolecular hydrogen bonds to dominate effective chiral recognition. Two linear equations of Ip (μA) = 11.40 CL-Tyr (mM) + 0.28 (R2 = 0.99147) and Ip (μA) = 7.96 CD-Tyr (mM) + 0.22 (R2 = 0.99583) in the concentration range 0.01–1.00 mM have been obtained. The limits of detection (S/N=3) for L-Tyr and D-Tyr were 4.81 and 6.89 µM, respectively. An interesting phenomenon was that the value of IL-Tyr/ID-Tyr (1.51) in this work was slightly higher than the value of IL-Trp/ID-Trp (1.49) reported in our previous study, where tryptophan (Trp) enantiomers were electrochemically recognized by Nafion (NF)-stabilized BPNSs-G2-β-CD composite. The two similar sensors fabricated by different methods showed different recognition ability toward either Tyr or Trp enantiomers, and the underlying mechanism was discussed in detail. More importantly, the proposed chiral sensor enables prediction of the percentages of D-Tyr in racemic Tyr mixtures. The chiral sensor may provide a novel approach for the fabrication of novel chiral platforms in the practical detection of L- or D-enantiomer in racemic Tyr mixtures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Biedermann F, Nau WM (2014) Noncovalent chirality sensing ensembles for the detection and reaction monitoring of amino acids, peptides, proteins, and aromatic drugs. Angew Chem Int Ed 53(22):5694–5699

    Article  CAS  Google Scholar 

  2. Di Pietrantonio F, Benetti M, Cannata D, Verona E, Girasole M, Fosca M et al (2016) A shear horizontal surface acoustic wave biosensor for a rapid and specific detection of D-serine. Sensors Actuators B Chem 226:1–6

    Article  Google Scholar 

  3. Jin GP, Lin XQ (2004) The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochem Commun 6(7):742

    Article  CAS  Google Scholar 

  4. Xing SF, Sun XF, Taylor AA, Walker SL, Wang YF, Wang SG (2015) D-amino acids inhibit initial bacterial adhesion: thermodynamic evidence. Biotechnol Bioeng 112(4):696–704

    Article  CAS  Google Scholar 

  5. Konya Y, Taniguchi M, Furuno M, Nakano Y, Tanaka N, Fukusaki E (2018) Mechanistic study on the high-selectivity enantioseparation of amino acids using a chiral crown ether-bonded stationary phase and acidic, highly organic mobile phase by liquid chromatography/time-of-flight mass spectrometry. J Chromatogr A 1578:35–44

    Article  CAS  Google Scholar 

  6. Zhang JD, Kabir KMM, Donald WA (2018) Metal-ion free chiral analysis of amino acids as small as proline using high-definition differential ion mobility mass spectrometry. Anal Chim Acta 1036:172–178

    Article  CAS  Google Scholar 

  7. Jafari M, Tashkhourian J, Absalan G (2018) Chiral recognition of tryptophan enantiomers using chitosan-capped silver nanoparticles: scanometry and spectrophotometry approaches. Talanta 178:870–878

    Article  CAS  Google Scholar 

  8. Nian S, Pu L (2017) Amphiphilic polymer-based fluorescent probe for enantioselective recognition of amino acids in immiscible water and organic phases. Chemistry 23(71):18066–18073

    Article  CAS  Google Scholar 

  9. Nie R, Bo X, Wang H, Zeng L, Guo L (2013) Chiral electrochemical sensing for tyrosine enantiomers on glassy carbon electrode modified with cysteic acid. Electrochem Commun 27:112–115

    Article  CAS  Google Scholar 

  10. Bao L, Dai J, Yang L, Ma J, Tao Y, Deng L et al (2018) Electrochemical recognition of tyrosine enantiomers based on chiral ligand exchange with sodium alginate as the chiral selector. J Electrochem Soc 167:486–491

    Google Scholar 

  11. Shi X, Wang Y, Peng C, Zhang Z, Chen J, Zhou X, Jiang H (2017) Enantiorecognition of tyrosine based on a novel magnetic electrochemical chiral sensor. Electrochim Acta 241:386–394

    Article  CAS  Google Scholar 

  12. Dong S, Bi Q, Qiao C, Sun Y, Zhang X, Lu X, Zhao L (2017) Electrochemical sensor for discrimination tyrosine enantiomers using graphene quantum dots and beta-cyclodextrins composites. Talanta 173:94–100

    Article  CAS  Google Scholar 

  13. Zor E, Morales-Narvaez E, Alpaydin S, Bingol H, Ersoz M, Merkoci A (2017) Graphene-based hybrid for enantioselective sensing applications. Biosens Bioelectron 87:410–416

    Article  CAS  Google Scholar 

  14. Zou J, Yu JG (2019) Chiral recognition of tyrosine enantiomers on a novel bis-aminosaccharides composite modified glassy carbon electrode. Anal Chim Acta 1088:35–44

    Article  CAS  Google Scholar 

  15. Zou J, Chen XQ, Zhao GQ, Jiang XY, Jiao FP, Yu JG (2019) A novel electrochemical chiral interface based on the synergistic effect of polysaccharides for the recognition of tyrosine enantiomers. Talanta 195:628–637

    Article  CAS  Google Scholar 

  16. Tao Y, Chu F, Gu X, Kong Y, Lv Y, Deng L (2018) A novel electrochemical chiral sensor for tyrosine isomers based on a coordination-driven self-assembly. Sensors Actuators B Chem 255:255–261

    Article  CAS  Google Scholar 

  17. Niu X, Mo Z, Yang X, Shuai C, Liu N, Guo R (2019) Graphene-ferrocene functionalized cyclodextrin composite with high electrochemical recognition capability for phenylalanine enantiomers. Bioelectrochemistry 128:74–82

    Article  CAS  Google Scholar 

  18. Niu X, Mo Z, Yang X, Sun M, Zhao P, Li Z, Ouyang M, Liu Z, Gao H, Guo R, Liu N (2018) Advances in the use of functional composites of beta-cyclodextrin in electrochemical sensors. Mikrochim Acta 185(7):328

    Article  Google Scholar 

  19. Wu D, Tan W, Yu Y, Yang B, Li H, Kong Y (2018) A facile avenue to prepare chiral graphene sheets as electrode modification for electrochemical enantiorecognition. Anal Chim Acta 1033:58–64

    Article  CAS  Google Scholar 

  20. Yang X, Niu X, Mo Z, Guo R, Liu N, Zhao P, Liu Z (2019) Electrochemical chiral interface based on the Michael addition/Schiff base reaction of polydopamine functionalized reduced graphene oxide. Electrochim Acta 319:705–715

    Article  CAS  Google Scholar 

  21. Zhou J, Chen Q, Wang Y, Han Q, Fu Y (2012) Stereoselectivity of tyrosine enantiomers in electrochemical redox reactions on gold matrices. Electrochim Acta 59:45–48

    Article  CAS  Google Scholar 

  22. Xu J, Wang Q, Xuan C, Xia Q, Lin X, Fu Y (2016) Chiral recognition of tryptophan enantiomers based on β-cyclodextrin-platinum nanoparticles/graphene nanohybrids modified electrode. Electroanal 28:868–873

    Article  CAS  Google Scholar 

  23. Qian J, Yi Y, Zhang D, Zhu G (2019) Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II). Mikrochim Acta 186(6):358

    Article  Google Scholar 

  24. Liang HJ, Ling TR, Rick JF, Chou TC (2005) Molecularly imprinted electrochemical sensor able to enantroselectively recognize d and l-tyrosine. Anal Chim Acta 542(1):83–89

    Article  CAS  Google Scholar 

  25. Ye Q, Yin ZZ, Wu H, Wu D, Tao Y, Kong Y (2020) Decoration of glutathione with copper-platinum nanoparticles for chirality sensing of tyrosine enantiomers. Electrochem Commun 110:106638

    Article  CAS  Google Scholar 

  26. Cho SY, Lee Y, Koh HJ, Jung H, Kim JS, Yoo HW, Kim J, Jung HT (2016) Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv Mater 28(32):7020–7028

    Article  CAS  Google Scholar 

  27. Cai J, Gou X, Sun B, Li W, Li D, Liu J, Hu F, Li Y (2019) Porous graphene-black phosphorus nanocomposite modified electrode for detection of leptin. Biosens Bioelectron 137:88–95

    Article  CAS  Google Scholar 

  28. Chen W, Ouyang J, Yi X, Xu Y, Niu C, Zhang W, Wang L, Sheng J, Deng L, Liu YN, Guo S (2018) Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater 30(3):1703458

    Article  Google Scholar 

  29. Zou J, Yu JG (2020) Nafion-stabilized black phosphorus nanosheets-maltosyl-beta-cyclodextrin as a chiral sensor for tryptophan enantiomers. Mater Sci Eng C Mater Biol Appl 112:110910

    Article  CAS  Google Scholar 

  30. Xiao Q, Lu S, Huang C, Su W, Zhou S, Sheng J, Huang S (2017) An electrochemical chiral sensor based on amino-functionalized graphene quantum dots/β-cyclodextrin modified glassy carbon electrode for enantioselective detection of tryptophan isomers. J Iran Chem Soc 14(9):1957–1970

    Article  CAS  Google Scholar 

  31. Gao LF, Xu JY, Zhu ZY, Hu CX, Zhang L, Wang Q, Zhang HL (2016) Small molecule-assisted fabrication of black phosphorus quantum dots with a broadband nonlinear optical response. Nanoscale 8(33):15132–15136

    Article  CAS  Google Scholar 

  32. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem 74:1993–1997

    Article  CAS  Google Scholar 

  33. Alam AU, Qin Y, Howlader MMR, Hu NX, Deen MJ (2018) Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sensors Actuators B Chem 254:896–909

    Article  CAS  Google Scholar 

  34. Huang JY, Zhao L, Lei W, Wen W, Wang YJ, Bao T, Xiong HY, Zhang XH, Wang SF (2018) A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-Nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Biosens Bioelectron 99:28–33

    Article  CAS  Google Scholar 

  35. Ogston AG (1948) Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature 162:963

    Article  CAS  Google Scholar 

  36. Douhal A (2004) Ultrafast guest dynamics in cyclodextrin nanocavities. Chem Rev 104:1955–1976

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 51674292), the Provincial Natural Science Foundation of Hunan (Grant No. 2016JJ1023), Key Area Research and Development Program of Guangdong Province, China (No. 2020B090919001), Hunan Graduate Education Innovation and Professional Ability Improvement Project (Grant No. CX20200329), and the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2020zzts056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Gang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Lan, XW., Zhao, GQ. et al. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Microchim Acta 187, 636 (2020). https://doi.org/10.1007/s00604-020-04606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04606-y

Keywords

Navigation