Skip to main content

Advertisement

Log in

Gold-silver core-shell nanoparticle–based impedimetric immunosensor for detection of iron homeostasis biomarker hepcidin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An impedimetric immunosensor based on gold-silver core-shell nanoparticles for hepcidin detection is reported. The core-shell nanoparticles were prepared by seed-mediated method and characterized by dynamic light scattering, UV-Vis, XRD, field emission-scanning electron micrograph imaging, energy dispersive spectroscopy, and atomic force microscopy. The immunosensor was fabricated with core-shell nanoparticles and cysteamine employing covalent chemistry (amide bond formation) strategy for ensuring proper orientation of anti-hepcidin antibody on to the amine-functionalized nanomaterial decorated electrodes. The hepcidin detection principle was based on the variation of charge transfer resistance (ΔRct) relative to the Fe(CN)64−/3− electrochemical probe in the presence of the biomarker. The frequency range was 10−1 to 105 Hz at the scan rate of 10 mV s−1and a potential of 0.1 V. Based on the antigen-antibody interaction in 40 min at pH 7.0, a linear relationship between ΔRct and hepcidin concentration was obtained in the range 0.01 to 100 ng/mL with a detection limit of 0.857 pg/mL. Furthermore, the designed immunosensor had acceptable reproducibility, stability, selectivity, and reusability. It was successfully applied to the detection of hepcidin in spiked human serum samples and acceptable recovery (90–95.9%) was obtained.

Gold-silver core-shell nanoparticle–based impedimetric immunosensor for detection of iron homeostasis biomarker hepcidin. The study focuses on the detection of iron regulatory protein hepcidin using gold-silver core-shell nanoparticles. This immunosensor was fabricated with core-shell nanoparticles and cysteamine employing covalent chemistry (amide bond formation) strategy. The sensor was sensitive in the range from 0.01 to 100 ng/mL, with a detection limit of 0.857 pg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hare DJ (2017) Hepcidin: a real-time biomarker of iron need. Metallomics 9:606–618

    CAS  PubMed  Google Scholar 

  2. Cox HD, Miller GD, Lai A, Cushman D, Ganz T, Eichner D (2018) Evaluation of serum markers for improved detection of autologous blood transfusions. Haematologica 103:e443–e445

    PubMed  PubMed Central  Google Scholar 

  3. Leuenberger N, Bulla E, Salamin O, Nicoli R, Robinson N, Baume N, Saugy M (2017) Hepcidin as a potential biomarker for blood doping. Drug Test Anal 9:1093–1097

    CAS  PubMed  Google Scholar 

  4. Enko D, Zelzer S, Fauler G, Herrmann M (2019) Evaluation of a commercial liquid-chromatography high-resolution mass-spectrometry method for the determination of hepcidin-25. Biochem Med (Zagreb) 29:020701

    Google Scholar 

  5. Moghieb A, Tesfay L, Nie S, Gritsenko M, Fillmore TL, Jacobs JM, Smith RD, Torti FM, Torti SV, Shi T, Ansong C (2019) A targeted mass spectrometric assay for reliable sensitive hepcidin quantification. Sci Rep 9:7264

    PubMed  PubMed Central  Google Scholar 

  6. Abbas IM, Hoffmann H, Montes-Bayon M, Weller MG (2018) Improved LC-MS/MS method for the quantification of hepcidin-25 in clinical samples. Anal Bioanal Chem 410:3835–3846

    CAS  PubMed  Google Scholar 

  7. Schmitz EMH, Leijten NM, van Dongen JLJ, Broeren MAC, Milroy LG, Brunsveld L, Scharnhorst V, van de Kerkhof D (2018) Optimizing charge state distribution is a prerequisite for accurate protein biomarker quantification with LC-MS/MS, as illustrated by hepcidin measurement. Clin Chem Lab Med 56:1490–1497

    CAS  PubMed  Google Scholar 

  8. Vialaret J, Picas A, Delaby C, Bros P, Lehmann S, Hirtz C (2018) Nano-flow vs standard-flow: which is the more suitable LC/MS method for quantifying hepcidin-25 in human serum in routine clinical settings? J Chromatogr B Anal Technol Biomed Life Sci 1086:110–117

    CAS  Google Scholar 

  9. Delaby C, Bros P, Vialaret J, Moulinier A, Delatour V, Gabelle A, Lehmann S, Hirtz C (2017) Quantification of hepcidin-25 in human cerebrospinal fluid using LC-MS/MS. Bioanalysis 9:337–347

    CAS  PubMed  Google Scholar 

  10. Cenci L, Andreetto E, Vestri A, Bovi M, Barozzi M, Iacob E, Busato M, Castagna A, Girelli D, Bossi AM (2015) Surface plasmon resonance based on molecularly imprinted nanoparticles for the picomolar detection of the iron regulating hormone Hepcidin-25. J Nanobiotechnology 13:51

    PubMed  PubMed Central  Google Scholar 

  11. Scarano S, Vestri A, Ermini ML, Minunni M (2013) SPR detection of human hepcidin-25: a critical approach by immuno- and biomimetic-based biosensing. Biosens Bioelectron 40:135–140

    CAS  PubMed  Google Scholar 

  12. Nicole US, Christophe Z, Eloïse F, Dorine WS, Michael BZ, Diego M (2017) Prediction of human iron bioavailability using rapid c-ELISAs for human plasma hepcidin. Clin Chem Lab Med 55:1186–1192

    Google Scholar 

  13. Grebenchtchikov N, Geurts-Moespot AJ, Kroot JJC, Den Heijer M, Tjalsma H, Swinkels DW, Sweep FGJ (2009) High-sensitive radioimmunoassay for human serum hepcidin. Br J Haematol 146:317–325

    CAS  PubMed  Google Scholar 

  14. Bell L, Calder B, Hiller R, Klein A, Soares NC, Stoychev SH, Vorster BC, Tabb DL (2018) Challenges and opportunities for biological mass spectrometry core facilities in the developing world. J Biomol Tech 29:4–15

    PubMed  PubMed Central  Google Scholar 

  15. Felix FS, Angnes L (2018) Electrochemical immunosensors - a powerful tool for analytical applications. Biosens Bioelectron 102:470–478

    CAS  PubMed  Google Scholar 

  16. Wongkaew N, Simsek M, Griesche C, Baeumner AJ (2019) Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem Rev 119:120–194

    CAS  PubMed  Google Scholar 

  17. Siangproh W, Dungchai W, Rattanarat P, Chailapakul O (2011) Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: a review. Anal Chim Acta 690:10–25

    CAS  PubMed  Google Scholar 

  18. Tang J, Tang D (2015) Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Microchim Acta 182:2077–2089

    CAS  Google Scholar 

  19. Steinbruck A, Stranik O, Csaki A, Fritzsche W (2011) Sensoric potential of gold-silver core-shell nanoparticles. Anal Bioanal Chem 401:1241–1249

    PubMed  Google Scholar 

  20. Chu X, Fu X, Chen K, Shen G-L, Yu R-Q (2005) An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosens Bioelectron 20:1805–1812

    CAS  PubMed  Google Scholar 

  21. Chumbimuni-Torres KY, Dai Z, Rubinova N, Xiang Y, Pretsch E, Wang J, Bakker E (2006) Potentiometric biosensing of proteins with ultrasensitive ion-selective microelectrodes and nanoparticle labels. J Am Chem Soc 128:13676–13677

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Min IH, Choi L, Ahn KS, Kim BK, Lee BY, Kim KS, Choi HN, Lee WY (2010) Electrochemical determination of carbohydrate-binding proteins using carbohydrate-stabilized gold nanoparticles and silver enhancement. Biosens Bioelectron 26:1326–1331

    CAS  PubMed  Google Scholar 

  23. Gan T, Li J, Xu L, Guo S, Zhao A, Sun J (2020) Multishell au@Ag@SiO2 nanorods embedded into a molecularly imprinted polymer as electrochemical sensing platform for quantification of theobromine. Microchim Acta 187:291

    CAS  Google Scholar 

  24. Lv H, Zhang X, Li Y, Ren Y, Zhang C, Wang P, Xu Z, Li X, Chen Z, Dong Y (2019) An electrochemical sandwich immunosensor for cardiac troponin I by using nitrogen/sulfur co-doped graphene oxide modified with Au@Ag nanocubes as amplifiers. Microchim Acta 186:416

    Google Scholar 

  25. Mujawar MA, Gohel H, Bhardwaj SK, Srinivasan S, Hickman N, Kaushik A (2020) Nano-enabled biosensing systems for intelligent healthcare: towards COVID-19 management. Mater Today Chem 17:100306

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaushik A (2019) Biomedical Nanotechnology Related Grand Challenges and Perspectives. Front. Nanotechnol 1: 2673-3013

  27. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    CAS  PubMed  Google Scholar 

  28. Chen S, Liu L, Zhou J, Jiang S (2003) Controlling antibody orientation on charged self-assembled monolayers. Langmuir 19:2859–2864

    CAS  Google Scholar 

  29. Dixit CK, Vashist SK, MacCraith BD, O’Kennedy R (2011) Multisubstrate-compatible ELISA procedures for rapid and high-sensitivity immunoassays. Nat Protoc 6:439–445

    CAS  PubMed  Google Scholar 

  30. Zhang Y, Zhang Z, Rong S, Yu H, Gao H, Ding P, Chang D, Pan H (2020) Electrochemical immunoassay for the carcinoembryonic antigen based on Au NPs modified zeolitic imidazolate framework and ordered mesoporous carbon. Mikrochim Acta 187:264

    CAS  PubMed  Google Scholar 

  31. Cho I-H, Kim DH, Park S (2020) Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res 24:6

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Raghav R, Srivastava S (2015) Core–shell gold–silver nanoparticles based impedimetric immunosensor for cancer antigen CA125. Sensors Actuators B Chem 220:557–564

    CAS  Google Scholar 

  33. Krejcova L, Novotny F, Pumera M (2019) Observed dramatically improved catalysis of Ag shell on Au/Ag core-shell nanorods is due to silver impurities released during etching process. Electroanalysis 31:1873–1877

    CAS  Google Scholar 

  34. Yang X, Wang Y, Liu Y, Jiang X (2013) A sensitive hydrogen peroxide and glucose biosensor based on gold/silver core–shell nanorods. Electrochim Acta 108:39–44

    CAS  Google Scholar 

  35. Huang J-Y, Lin H-T, Chen T-H, Chen C-A, Chang H-T, Chen C-F (2018) Signal amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices. ACS Sens 3:174–182

    CAS  PubMed  Google Scholar 

  36. Annur D, Wang Z-K, Liao J-D, Kuo C (2015) Plasma-synthesized silver nanoparticles on electrospun chitosan nanofiber surfaces for antibacterial applications. Biomacromolecules 16:3248–3255

    CAS  PubMed  Google Scholar 

  37. Pande S, Ghosh SK, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T (2007) Synthesis of normal and inverted gold−silver core−shell architectures in β-cyclodextrin and their applications in SERS. J Phys Chem C 111:10806–10813

    CAS  Google Scholar 

  38. Pei L, Huang Y, Li C, Zhang Y, Rasco B, Lai K (2014) Detection of triphenylmethane drugs in fish muscle by surface-enhanced raman spectroscopy coupled with Au-Ag core-shell nanoparticles. J Nanomater 2014: 1-8

  39. Banerjee M, Sharma S, Chattopadhyay A, Ghosh S (2011) Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Nanoscale 3:5120–5125

    CAS  PubMed  Google Scholar 

  40. Roushani M, Valipour A, Valipour M (2016) Layer-by-layer assembly of gold nanoparticles and cysteamine on gold electrode for immunosensing of human chorionic gonadotropin at picogram levels. Mater Sci Eng C 61:344–350

    CAS  Google Scholar 

  41. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    CAS  PubMed  Google Scholar 

  42. Yu HZ, Zhao JW, Wang YQ, Cai SM, Liu ZF (1997) Fabricating an azobenzene self-assembled monolayer via step-by-step surface modification of a cysteamine monolayer on gold. J Electroanal Chem 438:221–224

    CAS  Google Scholar 

  43. Luo T, Huang P, Gao G, Shen G, Fu S, Cui D, Zhou C, Ren Q (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express 19:17030–17039

    CAS  PubMed  Google Scholar 

  44. Dahlfors G, Stål P, Gran C, Bárány P, Sisowath C, Onelöv L, Nelson D, Eggertsen G, Marmur J, Beshara S (2015) Validation of a competitive ELISA assay for the quantification of human serum hepcidin. Scand J Clin Lab Invest 75:1–7

    Google Scholar 

  45. Ramírez C, del Valle MA, Isaacs M, Armijo F (2016) Electrochemical oxidation of catecholamines on fluorine-doped SnO2 substrates. Square-wave voltammetric method for methyldopa determination in pharmaceutical dosage forms. Electrochim Acta 199:227–233

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Central Instrument Laboratory, Panjab University, for instrumentation facilities. I would also like to thank and acknowledge UGC-NET for providing the award of fellowship [19/06/2016(i)-EU-V].

Funding

The research was financially supported by DST-SERB [EEQ/2017/000239], DST-Purse II, and Special Assistance Programme (UGC-SAP) [F.4-7/2015/DRS-III (SAP-II)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Prabhakar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1981 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Bharti, A., Singh, S. et al. Gold-silver core-shell nanoparticle–based impedimetric immunosensor for detection of iron homeostasis biomarker hepcidin. Microchim Acta 187, 626 (2020). https://doi.org/10.1007/s00604-020-04599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04599-8

Keywords

Navigation