Skip to main content
Log in

Silver nanoparticles conjugated MnFe-based Prussian blue analogue for voltammetric and impedimetric bioaptasensing of amifostine (ethyol)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel bioaptasensing-based electrochemical method for determination of amifostine (AMF) is proposed. The electrochemical aptasensor is based on modification of a glassy carbon electrode with a nanocomposite consisting of silver nanoparticles @ MnFe Prussian blue analogue nanospheres (AgNPs@MnFePBA NS), followed by immobilization of aptamer via Ag-N bonds (aptamer/AgNPs@MnFePBA NS/GCE). Experimental parameters including pH, incubation time, and aptamer concentrations were optimized. Electrochemical impedance spectroscopy (EIS) and differential pulse voltammetric (DPV) techniques were utilized to quantify AMF. The anodic peak current (∆Ipa) and charge transfer resistance (∆Rct) differences increase in the presence of AMF. Under the optimal conditions, using the redox probe, the electrochemical aptasensor exhibited linear ranges of 0.34–45 nmol L−1 and 0.69–45 nmol L−1 with LODs of 0.11 nmol L−1 and 0.23 nmol L−1 for EIS and DPV, respectively. The aptasensor was used to determine AMF in human plasma and in the presence of interfering species with recoveries and RSDs in the range 97.8–103.2% and 2.2–4.2%, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig.1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bachy CM, Fazenbaker CA, Kifle G, McCarthy MP, Cassatt DR (2004) Tissue levels of WR-1065, the active metabolite of amifostine (Ethyol®), are equivalent following intravenous or subcutaneous administration in cynomolgus monkeys. Oncology 67:187–193. https://doi.org/10.1159/000081316

    Article  CAS  PubMed  Google Scholar 

  2. Facorro G, Sarrasague MM, Torti H, Hager A, Avalos JS, Foncuberta M, Kusminsky G (2004) Oxidative study of patients with total body irradiation: effects of amifostine treatment. Bone Marrow Transplant 33:793–798. https://doi.org/10.1038/sj.bmt.1704427

    Article  CAS  PubMed  Google Scholar 

  3. Culy CR, Spencer CM (2001) Amifostine: an update on its clinical status as a cytoprotectant in patients with cancer receiving chemotherapy or radiotherapy and its potential therapeutic application in myelodysplastic syndrome. Drugs 61:641–684. https://doi.org/10.2165/00003495-200161050-00012

    Article  CAS  PubMed  Google Scholar 

  4. Singh VK, Seed TM (2019) The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin Drug Saf 18:1077–1090. https://doi.org/10.1080/14740338.2019.1666104

    Article  CAS  PubMed  Google Scholar 

  5. Ke CB, Lu TL, Chen JL (2020) Fluorometric determination of amifostine and alkaline phosphatase on amphiprotic molecularly imprinted silica crosslinked with binary functional silanes and carbon dots. Biosens Bioelectron 151:111965. https://doi.org/10.1016/j.bios.2019.111965

    Article  CAS  PubMed  Google Scholar 

  6. Li N, Na W, Liu H, Su X (2018) Dual mode detection of amifostine based on gold nanoparticles and sulfanilic acid functionalized graphene quantum dots. New J Chem 42:12126–12133. https://doi.org/10.1039/C8NJ01540F

    Article  CAS  Google Scholar 

  7. Na W, Liu S, Liu X, Su X (2015) Ultrasensitive detection of amifostine and alkaline phosphatase based on the growth of CdS quantum dots. Talanta 144:1059–1064. https://doi.org/10.1016/j.talanta.2015.07.057

    Article  CAS  PubMed  Google Scholar 

  8. Huang T, Chen N, Zhang L, Chen G (2013) Determination of amifostine and WR1065 in rat plasma by CE with amperometric detection. Chromatographia 76:1739–1745. https://doi.org/10.1007/s10337-013-2535-2

    Article  CAS  Google Scholar 

  9. Bai F, Kirstein MN, Hanna SK, Stewart CF (2002) New liquid chromatographic assay with electrochemical detection for the measurement of amifostine and WR1065. J Chromatogr B Anal Technol Biomed Life Sci 772:257–265. https://doi.org/10.1016/S1570-0232(02)00104-6

    Article  CAS  Google Scholar 

  10. Chen J, Lu Z, Lawrence TS (2005) Smith DE (2005) determination of WR-1065 in human blood by high-performance liquid chromatography following fluorescent derivatization by a maleimide reagent ThioGlo™3. J Chromatogr B Anal Technol Biomed Life Sci 819:161–167. https://doi.org/10.1016/j.jchromb.2005.02.003

    Article  CAS  Google Scholar 

  11. El-Wekil MM, Mahmoud AM, Alkahtani SA, Marzoukd AA, Ali R (2018) A facile synthesis of 3D NiFe2O4 nanospheres anchored on a novel ionic liquid modified reduced graphene oxide for electrochemical sensing of ledipasvir: application to human pharmacokinetic study. Biosens Bioelectron 109:164–170. https://doi.org/10.1016/j.bios.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  12. El-Wekil MM, Mahmoud AM, Marzoukd AA, Alkahtani SA, Ali R (2018) A novel molecularly imprinted sensing platform based on MWCNTs/AuNPs decorated 3D starfish like hollow nickel skeleton as a highly conductive nanocomposite for selective and ultrasensitive analysis of a novel pan-genotypic inhibitor velpatasvir in body fluids. J Mol Liq 271:105–111. https://doi.org/10.1016/j.molliq.2018.08.105

    Article  CAS  Google Scholar 

  13. Mahmoud AM, El-Wekil MM, Mahnashi MH, Ali MFB, Alkahtani SA (2019) Modification of N, S co-doped graphene quantum dots with p-aminothiophenol-functionalized gold nanoparticles for molecular imprint-based voltammetric determination of the antiviral drug sofosbuvir. Microchim Acta 186(9):617. https://doi.org/10.1007/s00604-019-3647-7

    Article  CAS  Google Scholar 

  14. Zhang Z, Ji H, Song Y, Zhang S, Wang M, Jia C, Tian J, He L, Zhang X, Liu C (2017) Fe (III)-based metal-organic framework-derived core-shell nanostructure: sensitive electrochemical platform for high trace determination of heavy metal ions. Biosens Bioelectron 94:358–364. https://doi.org/10.1016/j.bios.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  15. Gervais C, Languille M, Moretti G, Réguer S (2015) X-ray photochemistry of Prussian blue cellulosic materials: evidence for a substrate-mediated redox process. Langmuir 31:8168–8175

    Article  CAS  Google Scholar 

  16. Xu X, Liang H, Ming F, Qi Z, Xie Y, Wang Z (2017) Prussian blue analogues derived penroseite (Ni, co)Se2 nanocages anchored on 3D graphene aerogel for efficient water splitting. ACS Catal 7:6394–6399. https://doi.org/10.1021/acscatal.7b02079

    Article  CAS  Google Scholar 

  17. Zakaria M, Chikyow T (2017) Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments. Coord Chem Rev 352:328–345. https://doi.org/10.1016/j.ccr.2017.09.014

    Article  CAS  Google Scholar 

  18. Karyakin AA, Karyakina EE, Gorton L (2000) Amperometric biosensor for glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Anal Chem 72:1720–1723. https://doi.org/10.1021/ac990801o

    Article  CAS  PubMed  Google Scholar 

  19. Zhao J, Liu J, Tricard S, Wang L, Liang Y, Cao L, Fang J, Shen W (2015) Amperometric detection of hydrazine utilizing synergistic action of Prussian blue@silver nanoparticles/graphite felt modified electrode. Electrochim Acta 171:121–127. https://doi.org/10.1016/j.electacta.2015.05.027

    Article  CAS  Google Scholar 

  20. Xu Q, Wang G, Zhang M, Xu G, Lin J, Luo X (2018) Aptamer based label free thrombin assay based on the use of silver nanoparticles incorporated into self-polymerized dopamine. Mikrochim Acta 185(253):22. https://doi.org/10.1007/s00604-018-2787-5

    Article  CAS  Google Scholar 

  21. Khan ME, Han TH, Khan MM, Karim MR, Cho MH (2018) Environmentally sustainable fabrication of Ag@g-C3N4 nanostructures and their multifunctional efficacy as antibacterial agents and photocatalysts. ACS Appl Nano Mater 1:2912–2922. https://doi.org/10.1021/acsanm.8b00548

    Article  CAS  Google Scholar 

  22. Zhao T, Li T, Liu Y (2017) Silver nanoparticle plasmonic enhanced forster resonance energy transfer (FRET) imaging of proteinspecific sialylation on the cell surface. Nanoscale 9:9841–9847. https://doi.org/10.1039/C7NR01562C

    Article  CAS  PubMed  Google Scholar 

  23. Radhakrishnan S, Sumathi C, Umar A, Jae Kim S, Wilson J, Dharuman V (2013) Polypyrrole-poly (3,4- ethylenedioxythiophene)-Ag (PPy-PEDOT-Ag) nanocomposite films for label-free electrochemical DNA sensing. Biosens Bioelectron 47:133–140. https://doi.org/10.1016/j.bios.2013.02.049

    Article  CAS  PubMed  Google Scholar 

  24. Hao N, Hua R, Chen S, Zhang Y, Zhou Z, Qian J, Liu Q, Wang K (2018) Multiple signal-amplification via Ag and TiO2 decorated 3D nitrogen doped graphene hydrogel for fabricating sensitive labelfree photoelectrochemical thrombin aptasensor. Biosens Bioelectron 101:14–20. https://doi.org/10.1016/j.bios.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  25. Dunn MR, Jimenez RM, Chaput JC (2017) Analysis of aptamer discovery and technology. Nat Rev Chem 1(10):0076. https://doi.org/10.1038/s41570-017-0076

    Article  CAS  Google Scholar 

  26. Sgobbi LF, Razzino CA, Machado SAS (2016) A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with Prussian blue nanocubes modified screen printed electrode. Electrochim Acta 191:1010–1017. https://doi.org/10.1016/j.electacta.2015.11.151

    Article  CAS  Google Scholar 

  27. Piernas-Muñoz MJ, Castillo-Martínez E, Roddatis V, Armand M, Rojo T (2014) K1-xFe2+x/3(CN)6•yH2O, Prussian blue as a displacement anode for lithium ion batteries. J Power Sources 271:489–496. https://doi.org/10.1016/j.jpowsour.2014.08.025

    Article  CAS  Google Scholar 

  28. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, Zargar M (2012) Green biosynthesis of silver nanoparticles using curcuma longa tuber powder. Inter J Nanomed 7:5603–5610. https://doi.org/10.2147/IJN.S36786

    Article  CAS  Google Scholar 

  29. Yuan A, Zhang Q (2006) A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochem Commun 8:1173–1178. https://doi.org/10.1016/j.elecom.2006.05.018

    Article  CAS  Google Scholar 

  30. Ng CW, Ding J, Gan LM (2001) Microstructural changes induced by thermal treatment of cobalt V (II) hexacyanoferrate (III) compound. J Solid State Chem 156:400–407. https://doi.org/10.1006/jssc.2000.9013

    Article  CAS  Google Scholar 

  31. Di Noto V (1997) A novel polymer electrolyte based on oligo (ethylene glycol) 600, K2PdCl4, and K3Fe(CN)6. J Mater Res 12:3393–3403. https://doi.org/10.1557/JMR.1997.0446

    Article  Google Scholar 

  32. El-Wekil MM, Darweesh M, Shaykoon MSA, Ali R (2020) Enzyme-free and label-free strategy for electrochemical oxaliplatin aptasensing by using rGO/MWCNTs loaded with AuPd nanoparticles as signal probes and electro-catalytic enhancers. Talanta 217:121084. https://doi.org/10.1016/j.talanta.2020.121084

    Article  CAS  PubMed  Google Scholar 

  33. Baldrich E, Restrepo A, Osullivan CK (2004) Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Anal Chem 76:7053–7063. https://doi.org/10.1021/ac049258o

    Article  CAS  PubMed  Google Scholar 

  34. Bini A, Minunni M, Tombelli S, Centi S, Mascini M (2007) Analytical performances of aptamer-based sensing for thrombin detection. Anal Chem 79:3016–3019. https://doi.org/10.1021/ac070096g

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad A. Alkahtani.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1754 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkahtani, S.A. Silver nanoparticles conjugated MnFe-based Prussian blue analogue for voltammetric and impedimetric bioaptasensing of amifostine (ethyol). Microchim Acta 187, 576 (2020). https://doi.org/10.1007/s00604-020-04557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04557-4

Keywords

Navigation