Skip to main content
Log in

Novel electrochemical sensing platform based on ion imprinted polymer with nanoporous gold for ultrasensitive and selective determination of As3+

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor has been developed based on ion imprinted polymer (IIP) and nanoporous gold (NPG) modified gold electrode (IIP/NPG/GE) for determination of arsenic ion (As3+) in different kinds of water. NPG with high conductivity, large specific surface area, and high biocompatibility was prepared by a green electrodeposition method. Then a layer of IIP was synthesized in situ on NPG surface by electropolymerization, in which As3+ was used as template ion and o-phenylenediamine as functional monomer. We used potassium ferricyanide and potassium ferrocyanide chelates as electrochemical probes to generate signals. The electrochemical behavior of IIP/NPG/GE (vs. Ag/AgCl) was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The linear range for As3+ was 2.0 × 10−11 to 9.0 × 10−9 M, and the lower detection limit was 7.1 × 10−12 M (S/N = 3). This newly developed sensor has good stability and selectivity, and has been successfully applied to the As3+ determination of four kinds of water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Majid E, Hrapovic S, Liu Y (2006) Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal Chem 78(3):762–769

    CAS  PubMed  Google Scholar 

  2. Bikash Kumar J, Raj CR (2008) Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Anal Chem 80(13):4836–4844

    Google Scholar 

  3. Ren B, Sudarsanam P, Kandjani AE, Hillary B, Jones LA (2018) Electrochemical detection of As(III) on a Manganese Oxide-Ceria (Mn2O3/CeO2) nanocube modified Au Electrode. Eectroanalysis 30(5):1–10

    Google Scholar 

  4. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta. 58(1):201–235

    CAS  PubMed  Google Scholar 

  5. Abdollah S, Hussein M, Rahman H, Saied S (2008) Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sensors Actuators B Chem 129(1):246–254

    Google Scholar 

  6. Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned. Talanta. 58(1):3–22

    CAS  PubMed  Google Scholar 

  7. Yang M, Chen X, Liu J-H, Huang X-J (2016) Enhanced anti-interference on electrochemical detection of arsenite with nanoporous gold in mild condition. Sensors Actuators B Chem 234:404–411

    CAS  Google Scholar 

  8. Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Lodh D, Das B, Nayak B, Saha KC, Mukherjee SC, Pati S (2005) Are some animals more equal than others. Toxicology. 208(1):165–169

    CAS  PubMed  Google Scholar 

  9. Welna M, Szymczycha-Madeja A, Pohl P (2014) Improvement of determination of trace amounts of arsenic and selenium in slim coffee products by HG-ICP-OES. Food Anal Methods 7(5):1016–1023

    Google Scholar 

  10. Male KB, Sabahudin H, Santini JM, Luong JHT (2007) Biosensor for arsenite using arsenite oxidase and multiwalled carbon nanotube modified electrodes. Anal Chem 79(20):7831–7837

    CAS  PubMed  Google Scholar 

  11. Pereira FJ, Vázquez MD, Debán L, Aller AJ (2014) Spectrometric characterisation of the solid complexes formed in the interaction of cysteine with As(III), Th(IV) and Zr(IV). Polyhedron. 76(8):71–80

    CAS  Google Scholar 

  12. Ni Z, Na F, Fang Z, Feng Y, Ling K (2011) Simultaneous multi-channel hydride generation atomic fluorescence spectrometry determination of arsenic, bismuth, tellurium and selenium in tea leaves. Food Chem 124(3):1185–1188

    Google Scholar 

  13. Yang M, Chen X, Jiang TJ, Guo Z, Liu J, Huang XJ (2016) Electrochemical detection of trace arsenic(III) by nanocomposite of nanorod-like α-MnO2 decorated with ~5 nm Au nanoparticles: considering the change of arsenic speciation. Anal Chem 88(19):9720–9728

    CAS  PubMed  Google Scholar 

  14. Wang D, Wang J, Zhang J, Li Y, Zhang Y, Li Y, Ye B-C (2019) Novel electrochemical sensing platform based on integration of molecularly imprinted polymer with Au@Ag hollow nanoshell for determination of resveratrol. Talanta. 196:479–485

    CAS  PubMed  Google Scholar 

  15. Alizadeh T, Rashedi M (2014) Synthesis of nano-sized arsenic-imprinted polymer and its use as As3+ selective ionophore in a potentiometric membrane electrode: part 1. Anal Chim Acta 843:7–17

    CAS  PubMed  Google Scholar 

  16. Kuras MJ, Więckowska E (2015) Synthesis and characterization of a new copper(II) ion-imprinted polymer. Polym Bull 72(12):3227–3240

    CAS  Google Scholar 

  17. Li Y, Liu J, Liu M, Yu F, Zhang L, Tang H, Ye B-C, Lai L (2016) Fabrication of ultra-sensitive and selective dopamine electrochemical sensor based on molecularly imprinted polymer modified graphene@carbon nanotube foam. Electrochem Commun 64:42–45

    CAS  Google Scholar 

  18. Kuras MJ, Perz K, Kołodziejski WL (2017) Synthesis, characterization and application of a novel zinc(II) ion-imprinted polymer. Polym Bull 74(12):1–20

    Google Scholar 

  19. Li Y, Song H, Zhang L, Zuo P, Ye B-C, Yao J, Chen W (2016) Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. Biosens Bioelectron 78:308–314

    CAS  PubMed  Google Scholar 

  20. Feng Y, Li X, Xu K, Zou H, Li H, Liang B (2015) Qualitative and simultaneous quantitative analysis of cimetidine polymorphs by ultraviolet–visible and shortwave near-infrared diffuse reflectance spectroscopy and multivariate calibration models. J Pharm Biomed Anal 104:112–121

    CAS  PubMed  Google Scholar 

  21. Zhang J, Liu J, Zhang Y, Yu F, Wang F, Peng Z, Li Y (2018) Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer. Microchim Acta 185(1):78

    Google Scholar 

  22. Chen C, Wang Y, Ding S, Hong C, Wang Z (2019) A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine. Microchem J 147:191–197

    CAS  Google Scholar 

  23. Zhang R, Zhang Y, Deng X, Sun S, Li Y (2018) A novel dual-signal electrochemical sensor for bisphenol A determination by coupling nanoporous gold leaf and self-assembled cyclodextrin. Electrochim Acta 271:417–424

    CAS  Google Scholar 

  24. Jiang L, Xiantao J, Ruyue Z, Yang Z, Leiming W (2019) MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv Funct Mater:1807326

  25. Bala A, Pietrzak M, Zajda J, Malinowska E (2015) Further studies on application of Al(III)-tetraazaporphine in membrane-based electrochemical sensors for determination of fluoride. Sensors Actuators B Chem 207:1004–1009

    CAS  Google Scholar 

  26. Wang M, Gao Y, Sun Q, Zhao J (2015) Ultrasensitive and simultaneous determination of the isomers of Amaranth and Ponceau 4R in foods based on new carbon nanotube/polypyrrole composites. Food Chem 172:873–879

    CAS  PubMed  Google Scholar 

  27. Cui G, Zhang M, Zou G (2013) Resonant tunneling modulation in quasi-2D Cu2O/SnO2 pn horizontal-multi-layer heterostructure for room temperature H2S sensor application. SCI Rep-Uk 3:1250

    Google Scholar 

  28. Jiang D, Zhang Y, Chu H, Liu J, Wan J, Chen M (2014) N-doped graphene quantum dots as an effective photocatalyst for the photochemical synthesis of silver deposited porous graphitic C3N4 nanocomposites for nonenzymatic electrochemical H2O2 sensing. RSC Adv 4(31):16163–16171

    CAS  Google Scholar 

  29. Ananthi A, Kumar SS, Phani KL (2015) Facile one-step direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid. Electrochim Acta 151(5):584–590

    CAS  Google Scholar 

  30. Wang J, Hua G, Sun F, Xu C (2014) Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensors Actuators B Chem 191(2):612–618

    CAS  Google Scholar 

  31. Fan H, Guo Z, Gao L, Zhang Y, Fan D, Ji G, Du B, Wei Q (2015) Ultrasensitive electrochemical immunosensor for carbohydrate antigen 72-4 based on dual signal amplification strategy of nanoporous gold and polyaniline–Au asymmetric multicomponent nanoparticles. Biosens Bioelectron 64:51–56

    CAS  PubMed  Google Scholar 

  32. Chang J-K, Wu C-M, Sun I-W (2010) Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications. J Mater Chem 20(18):3729–3735

    CAS  Google Scholar 

  33. Lu W, Qin X, Asiri AM, Al-Youbi AO, Sun X (2013) Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection. Analyst. 138(2):417–420

    CAS  PubMed  Google Scholar 

  34. Yang J, Hu Y, Li Y (2019) Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection. Biosens Bioelectron 135:224–230

    CAS  PubMed  Google Scholar 

  35. Samah NA, Rosli NAM, Manap AHA, Aziz YFA, Yusoff MM (2020) Synthesis & characterization of ion imprinted polymer for arsenic removal from water: a value addition to the groundwater resources. Chem Eng J 394:124900

    Google Scholar 

  36. Feeney R, Kounaves SP (2000) On-site analysis of arsenic in groundwater using a microfabricated gold ultramicroelectrode array. Anal Chem 72(10):2222–2228

    CAS  PubMed  Google Scholar 

  37. Sharma S, Gupta BD (2018) Fiber optic surface-plasmon-resonance-based highly sensitive arsenic sensor prepared using alpha-Fe2O3/SnO2 core-shell nanostructure with optimized probe parameters. Appl Opt 57:10466–10473

    CAS  PubMed  Google Scholar 

  38. Rahman MM, Alenazi NA, Hussein MA, Alam MM, Alamry KA, Asiri AM (2018) Nanocomposites-based nitrated polyethersulfone and doped ZnYNiO for selective As3+sensor application. Adv Polym Technol 37:3689–3700

    CAS  Google Scholar 

  39. Hwang J-H, Pathak P, Wang X, Rodriguez KL, Park J, Cho HJ, Lee WH (2019) A novel Fe-Chitosan-coated carbon electrode sensor for in situ As(III) detection in mining wastewater and soil leachate. Sensors Actuators B Chem 294:89–97

    CAS  Google Scholar 

  40. Ren B, Sudarsanam P, Kandjani AE, Hillary B, Amin MH, Bhargava SK, Jones LA (2018) Electrochemical detection of As (III) on a manganese oxide-ceria (Mn2O3/CeO2) nanocube modified Au electrode. Electroan. 30:928–936

    CAS  Google Scholar 

  41. Takmakov P (2011) Probing neurochemistry with fast-scan cyclic voltammetry

  42. Vega-Figueroa K, Santillán J, Ortiz-Gómez V, Ortiz-Quiles EO, Quiñones-Colón BA, Castilla-Casadiego DA et al (2018) Aptamer-based impedimetric assay of arsenite in water: interfacial properties and performance. ACS Omega 3(2):1437–1444

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Haidong G, Yuanyuan Y, Feng et al (2018) Electrochemical detection of arsenic contamination based on hybridization chain reaction and recjf exonuclease-mediated amplification. Chem Eng J 2018

  44. Ensafi AA, Akbarian F, Heydari-Soureshjani E, Rezaei B (2018) A novel aptasensor based on 3D-reduced graphene oxide modified gold nanoparticles for determination of arsenite. Biosens Bioelectron 2018(122):25–31

    Google Scholar 

  45. Baghbaderani SS, Noorbakhsh A (2019) Novel chitosan-Nafion composite for fabrication of highly sensitive impedimetric and colorimetric As (III) aptasensor. Biosens Bioelectron 131:1–8

    CAS  PubMed  Google Scholar 

  46. Wang Y, Wang P, Wang Y, He X, Wang K (2015) Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection. Talanta. 2015(141):122–127

    Google Scholar 

  47. Cui L, Wu J, Ju H (2016) Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite. Biosens Bioelectron 79:861–865

    CAS  PubMed  Google Scholar 

  48. Wen S, Zhang C, Liang R, Chi B, Yuan Y, Qiu J (2017) Highly sensitive voltammetric determination of arsenite by exploiting arsenite-induced conformational change of ssDNA and the electrochemical indicator methylene blue. Microchim Acta 184(10):4047–4054

    CAS  Google Scholar 

  49. Wen SH, Wang Y, Yuan YH, Liang RP, Qiu JD (2018) Electrochemical sensor for arsenite detection using graphene oxide assisted generation of prussian blue nanoparticles as enhanced signal label. Anal Chem Acta 1002:82–89

    CAS  Google Scholar 

  50. Li Y, Liu J, Yu F, Tang H, Zhao F, Ye B-C, Chen W, Lv X (2015) Electrochemical determination of trace lead (II) with enhanced sensitivity and selectivity by three-dimensional nanoporous gold leaf and self-assembled homocysteine monolayer. J Electroanal Chem 758:78–84

    CAS  Google Scholar 

Download references

Funding

The project financially supported by National Natural Science Foundation of China (2016YFC0400704).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wuwei Ma or Qigang Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 22113 kb)

Supporting information

Supporting information

Supplementary data associated with this article can be found in the online version at***.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Chang, Q., Zhao, J. et al. Novel electrochemical sensing platform based on ion imprinted polymer with nanoporous gold for ultrasensitive and selective determination of As3+. Microchim Acta 187, 571 (2020). https://doi.org/10.1007/s00604-020-04552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04552-9

Keywords

Navigation