A single-tube sample preparation method based on a dual-electrostatic interaction strategy for molecular diagnosis of gram-negative bacteria


A single-tube method based on a dual-electrostatic interaction (EI) strategy for bacteria capture and DNA extraction was designed to enable the highly sensitive detection of nucleic acids. Specially designed magnetic nanoparticles were developed to meet the opposing requirements of a single-tube method, which exist between the strong EI required for efficient bacteria capture and the weak EI required for DNA extraction with minimal DNA adsorption. A dual-EI strategy for the single-tube (DESIGN) method was thus developed to integrate bacteria enrichment, bacteria cell lysis, and DNA recovery in a single tube, thereby minimizing precious sample loss and reducing handling time. Subsequently, we evaluated the performance with a variety of concentrations from 5 to 100 colony-forming units (CFU)/10 mL human urine and milk samples. The DESIGN method achieved the simple and sensitive detection of Salmonella enterica serovar Typhimurium in 10 mL of human urine and milk samples up to 5 CFU by quantitative PCR. Furthermore, the DESIGN method detected Brucella ovis and Escherichia coli from 10 mL of human urine with a detection limit up to 5 CFU/10 mL.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Electrostatic interaction


Magnetic nanoparticle

DESIGN method:

Dual-electrostatic interaction strategy based on a single-tube method

S. Typhimurium:

Salmonella enterica serotype Typhimurium

B. ovis :

Brucella ovis

E. coli :

Escherichia coli


  1. 1.

    Reali S, Najib EY, Treuerné Balázs KE, Tan ACH, Váradi L, Hibbs DE, Groundwater PW (2019) Novel diagnostics for point-of-care bacterial detection and identification. RSC Adv 9:21486–21497. https://doi.org/10.1039/C9RA03118A

    CAS  Article  Google Scholar 

  2. 2.

    Park KS (2018) Nucleic acid aptamer-based methods for diagnosis of infections. Biosens Bioelectron 102:179–188. https://doi.org/10.1016/j.bios.2017.11.028

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Fakruddin M, Mannan KSB, Chowdhury A, Mazumdar RM, Hossain MN, Islam S, Chowdhury MA (2013) Nucleic acid amplification: alternative methods of polymerase chain reaction. J Pharm Bioallied Sci 5:245–252. https://doi.org/10.4103/0975-7406.120066

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Wang Y, Salazar JK (2016) Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr Rev Food Sci Food Saf 15:183–205. https://doi.org/10.1111/1541-4337.12175

    CAS  Article  Google Scholar 

  5. 5.

    Ding T, Suo Y, Zhang Z, Liu D, Ye X, Chen S, Zhao Y (2017) A multiplex RT-PCR assay for S. aureus, L. monocytogenes, and Salmonella spp. detection in raw milk with pre-enrichment. Front Microbiol 8:989. https://doi.org/10.3389/fmicb.2017.00989

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Zhao F, Koo B, Liu H, Jin CE, Shin Y (2018) A single-tube approach for in vitro diagnostics using diatomaceous earth and optical sensor. Biosens Bioelectron 99:443–449. https://doi.org/10.1016/j.bios.2017.08.027

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Dao TNT, Lee EY, Koo B, Jin CE, Lee TY, Shin Y (2018) A microfluidic enrichment platform with a recombinase polymerase amplification sensor for pathogen diagnosis. Anal Biochem 544:87–92. https://doi.org/10.1016/j.ab.2017.12.030

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Kamt V, Pandey S, Pakinikar K, Bodas D (2018) A facile one-step method for cell lysis and DNA extraction of waterborne pathogens using a microchip. Biosens Bioelectron 99:62–69. https://doi.org/10.1016/j.bios.2017.07.040

    CAS  Article  Google Scholar 

  9. 9.

    Nguyen HV, Nguyen VD, Lee EY, Seo TS (2019) Point-of-care genetic analysis for multiplex pathogenic bacteria on a fully integrated centrifugal microdevice with a large-volume sample. Biosens Bioelectron 136:132–139. https://doi.org/10.1016/j.bios.2019.04.035

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Nguyen HV, Nguyen VD, Nguyen HQ, Chau THT, Lee EY, Seo TS (2019) Nucleic acid diagnostics on the total integrated lab-on-a-disc for point-of-care testing. Biosens Bioelectron 141:111466. https://doi.org/10.1016/j.bios.2019.111466

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S (2018) Advances in magnetic nanoparticles for biomedical applications. Adv Healthcare Mater 7:1700845. https://doi.org/10.1002/adhm.201700845

    CAS  Article  Google Scholar 

  12. 12.

    Yi J, Qin Q, Wang Y, Zhang R, Bi HY, Yu SN, Liu BH, Qiao L (2018) Identification of pathogenic bacteria in human blood using IgG-modified Fe3O4 magnetic beads as a sorbent and MALDI-TOF MS for profiling. Microchim Acta 185:542. https://doi.org/10.1007/s00604-018-3074-1

    CAS  Article  Google Scholar 

  13. 13.

    Brandão D, Liébana S, Pividori MI (2015) Multiplexed detection of foodborne pathogens based on magnetic particles. New Biotechnol 32:511–520. https://doi.org/10.1016/j.nbt.2015.03.011

    CAS  Article  Google Scholar 

  14. 14.

    Hussain B, Yüce M, Ullah N, Budak H (2017) 3 - Bioconjugated nanomaterials for monitoring food contamination. In: Grumezescu AM (ed) Nanobiosensors. Academic Press, pp. 93-127

  15. 15.

    Fedio WM, Jinneman KC, Yoshitomi KJ, Zapata R, Wendakoon CN, Browning P, Weagant SD (2011) Detection of E. Coli O157:H7 in raw ground beef by Pathatrix™ immunomagnetic-separation, real-time PCR and cultural methods. Int J Food Microbiol 148:87–92. https://doi.org/10.1016/j.ijfoodmicro.2011.05.005

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Campuano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen JC, Merkoçi A, Wang J (2012) Bacterial isolation by lectin-modified microengines. Nano Lett 12:396–401. https://doi.org/10.1021/nl203717q

    CAS  Article  Google Scholar 

  17. 17.

    Zhu M, Liu W, Liu H, Liao Y, Wei J, Zhou X, Xing D (2015) Construction of Fe3O4/vancomycin/PEG magnetic nanocarrier for highly efficient pathogen enrichment and gene sensing. ACS Appl Mater Interfaces 7:12873–12881. https://doi.org/10.1021/acsami.5b02374

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Yang X, Zhou X, Zhu M, Xing D (2017) Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms. Biosens Bioelectron 91:238–245. https://doi.org/10.1016/j.bios.2016.11.044

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Meng X, Yang G, Li F, Liang T, Lai W, Xu H (2017) Sensitive detection of Staphylococcus aureus with vancomycin-conjugated magnetic beads as enrichment carriers combined with flow cytometry. ACS Appl Mater Interfaces 9:21464–21472. https://doi.org/10.1021/acsami.7b05479

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Malakootikhah J, Rezayan AH, Begahdari B, Nasseri S, Rastegar H (2017) Glucose reinforced Fe3O4@cellulose mediated amino acid: reusable magnetic glyconanoparticles with enhanced bacteria capture efficiency. Carbohydr Polym 170:190–197. https://doi.org/10.1016/j.carbpol.2017.04.078

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Thomas B, Yan K, Hu X, Donnier-Maréchal M, Chen G, He X, Vidal S (2020) Fluorescent glycoconjugates and there applications. Chem Soc Rev 49:593–641. https://doi.org/10.1039/C8CS00118A

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Wei Z, Zhou Z, Yang M, Lin C, Zhao Z, Huang D, Chen Z, Gao J (2011) Multifunctional Ag@Fe2O3yolk-shell nanoparticles for simultaneous capture, kill, and removal of pathogen. J Mater Chem 21:16344–16348. https://doi.org/10.1039/c1jm13691g

    CAS  Article  Google Scholar 

  23. 23.

    Cartwright M, Rottman M, Shapiro NI, Seiler B, Lombardo P, Gamini N, Tomolonis J, Watters AL, Waterhouse A, Leslie D, Bolgen D, Graveline A, Kang JH, Didar T, Dimitrakakis N, Cartwright D, Super M, Ingber DI (2016) A broad-spectrum infection diagnostic that detects pathogen-associated molecular patterns (PAMPs) in whole blood. EBioMedicine 9:217–227. https://doi.org/10.1016/j.ebiom.2016.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Halder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, Karmakar S, Sen T (2015) Alteration of zeta potential and membrane permeability in bacteria: a study with cationic agents. Springerplus 4:672. https://doi.org/10.1186/s40064-015-1476-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Tachaboonyakiat W (2017) 9 - Antimicrobial applications of chitosan. In Jennings JA, Bumgardner JD (ed) Chitosan based biomaterials volume 2. Woodhead Publishing, pp. 245-274

  26. 26.

    Jin Y, Liu F, Shan C, Tong M, Hou Y (2014) Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Res 50:124–134. https://doi.org/10.1016/j.watres.2013.11.045

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Singh S, Barick KC, Bahadur D (2011) Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. J Hazard Mater 192:1539–1547 j.jhazmat.2011.06.074

    CAS  Article  Google Scholar 

  28. 28.

    Zhan S, Yang Y, Shen Z, Shan J, Li Y, Yang S, Zhu D (2014) Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. J Hazard Mater 274:115–123. https://doi.org/10.1016/j.jhazmat.2014.03.067

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Shan Z, Wu Q, Wang X, Zhou Z, Oakes KD, Zhang X, Huang Q, Yang W (2010) Bacteria capture, lysate clearance, and plasmid DNA extraction using pH-sensitive multifunctional magnetic nanoparticles. Anal Biochem 398:120–122. https://doi.org/10.1016/j.ab.2009.11.006

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Khodadust R, Unsoy G, Yalcın S, Gunduz G, Gunduz U (2013) PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations. J Nanopart Res 15:1488–1501. https://doi.org/10.1007/s11051-013-1488-6

    CAS  Article  Google Scholar 

  31. 31.

    Chen F, Haddour N, Frenea-Robin M, Chevolot Y, Monnier V (2018) Polyamidoamine dendrimers as crosslinkers for efficient electron transfer between redox probes onto magnetic nanoparticles. ChemistrySelect 3:2823–2829. https://doi.org/10.1002/slct.201703135

    CAS  Article  Google Scholar 

  32. 32.

    Tanaka T, Shibata K, Hosokawa M, Hatakeyama K, Arakaki A, Gomyo H, Mogi T, Taguchi T, Wake H, Tanaami T, Matsunaga T (2012) Characterization of magnetic nanoparticles modified with thiol functionalized PAMAM dendron for DNA recovery. J Colloid Interface Sci 377:469–475. https://doi.org/10.1016/j.jcis.2012.03.039

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Arakaki A, Shibata K, Mogi T, Hosokawa M, Hatakeyama K, Gomyo H, Taguchi T, Wake H, Tanaami T, Matsunaga T, Tanaka T (2012) Efficient DNA release from PAMAM dendrimer-modified superparamagnetic nanoparticles for DNA recovery. Polym J (Tokyo, Jpn) 44:672–677. https://doi.org/10.1038/pj.2012.32

    CAS  Article  Google Scholar 

  34. 34.

    Chen F, Haddour N, Frenea-Robin M, Chevolot Y, Monnier V (2018) Electroactive magnetic nanoparticles under magnetic attraction on a microchip electrochemical device. J Magn Magn Mater 475:345–351. https://doi.org/10.1016/j.jmmm.2018.11.091

    CAS  Article  Google Scholar 

  35. 35.

    Fang W, Han C, Zhang H, Wei W, Liu R, Shen Y (2016) Preparation of amino-functionalized magnetic nanoparticles for enhancement of bacterial capture efficiency. RSC Adv 6:67875–67882. https://doi.org/10.1039/C6RA13070D

    CAS  Article  Google Scholar 

  36. 36.

    Li Z, Ma J, Ruan J, Zhuang X (2019) Using positively charged magnetic nanoparticles to capture bacteria at ultralow concentration. Nanoscale Res Lett 14:195. https://doi.org/10.1186/s11671-019-3005-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Hu LL, Hu B, Shen LM, Zhang DD, Chen XW, Wang JH (2015) Polyethyleneimine–iron phosphate nanocomposite as a promising adsorbent for the isolation of DNA. Talanta 132:857–863. https://doi.org/10.1016/j.talanta.2014.10.047

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Parsian M, Mutlu P, Yalcin S, Tezcaner A, Gunduz U (2016) Half generations magnetic PAMAM dendrimers as an effective system for targeted gemcitabine delivery. Int J Pharm 515:104–113. https://doi.org/10.1016/j.ijpharm.2016.10.015

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Fahmi MZ, Chen JK, Huang CC, Ling YC, Chang JY (2015) Phenylboronic acid-modified magnetic nanoparticles as a platform for carbon dot conjugation and doxorubicin delivery. J Mater Chem B 3:5532–5543. https://doi.org/10.1039/c5tb00289c

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Wannapob R, Kanatharana P, Limbut W, Numnuam A, Asawatreratanakul P, Thammakhet C, Thavarungkul P (2010) Affinity sensor using 3-aminophenylboronic acid for bacteria detection. Biosens Bioelectron 26:357–364. https://doi.org/10.1016/j.bios.2010.08.005

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Tamer U, Cetin D, Suludere Z, Boyaci IH, Temiz HT, Yegenoglu H, Daniel P, Dinçer I, Elerman Y (2013) Gold-coated iron composite nanospheres targeted the detection of Escherichia coli. Int J Mol Sci 14:6223–6240. https://doi.org/10.3390/ijms14036223

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Qian S, Lin M, Ji W, Yuan H, Zhang Y, Jing Z, Zhao J, Masson JF, Peng W (2018) Boronic acid functionalized Au nanoparticles for selective MicroRNA signal amplification in fiber-optic surface plasmon resonance sensing system. ACS Sens 3:929–935. https://doi.org/10.1021/acssensors.7b00871

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Maeda Y, Toyoda T, Mogi T, Taguchi T, Tanaami T, Yoshino T, Matsunaga T, Tanaka T (2016) DNA recovery from a single bacterial cell using charge-reversible magnetic nanoparticles. Colloids Surf B: Biointerfaces 139:117–122. https://doi.org/10.1016/j.colsurfb.2015.11.057

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Katevatis C, Fan A, Klapperich CM (2017) Low concentration DNA extraction and recovery using a silica solid phase. PLoS One 12:1–14. https://doi.org/10.1371/journal.pone.0176848

    CAS  Article  Google Scholar 

  45. 45.

    Liu L, Zhang Y, Zhang L, Yan G, Yao J, Yang P, Lu H (2012) Highly specific revelation of rat serum glycopeptidome by boronic acid-functionalized mesoporous silica. Anal Chim Acta 753:64–72 j.aca.2012.10.002

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge Center for Bio-Medical Engineering Core Facility at Dankook University for providing critical reagents and equipment.


This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2019R1I1A3A01063051) and a research fund from Chungnam National University.

Author information



Corresponding authors

Correspondence to Kyudong Han or Tae Yoon Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 653 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Kim, S., Na, JH. et al. A single-tube sample preparation method based on a dual-electrostatic interaction strategy for molecular diagnosis of gram-negative bacteria. Microchim Acta 187, 558 (2020). https://doi.org/10.1007/s00604-020-04536-9

Download citation


  • Electrostatic interaction
  • Magnetic nanoparticle
  • Pathogenic bacteria enrichment
  • Pathogenic bacteria detection