Skip to main content

Electrochemical sensor for the quantification of iodide in urine of pregnant women

Abstract

An electrochemical method has been developed to determine iodide in urine using an electrode modified with silver oxide microparticles–poly acrylic acid/poly vinyl alcohol (Ag2OMPs-PAA/PVA). Silver oxide particles were formed by electrochemical oxidation via cyclic voltammetry. The modified electrode exhibited an excellent response to iodide detection by cathodic stripping voltammetry. The fabrication and operation conditions were optimized in terms of PVA concentration, K2HPO4 concentration, amount of AgMPs-PAA/PVA, number of cycles for oxide formation, electrolyte, applied potential (vs. Ag/AgCl), and time. Under the optimum conditions, iodide determination produced a linear range from 1 to 40 μM. The limit of detection was 0.3 μM. Precision was found to be within 7.4% RSD. The developed method was applied to the determination of iodide in urine samples of pregnant women with satisfying recoveries (86 ± 1 to 108 ± 1%).

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Callejas SMaPRO L (2016) Iodine intake anf healthy aging. Elsevier Inc, pp 583–597

  2. 2.

    Zimmermann MB (2011) The role of iodine in human growth and development. Semin Cell Dev Biol 22:645–652

    CAS  Article  Google Scholar 

  3. 3.

    National Academy of Sciences (2000) Dietary reference intake for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molypdenum, nickel, silicon, vanadium and zinc. p 800

  4. 4.

    Zimmermann MB (2011) The role of iodine in human growth and development, vol 22. Elsevier, pp 645–652

  5. 5.

    Skeaff SA (2011) Iodine deficiency in pregnancy: the effect on neurodevelopment in the child. Nutrients 3:265–273

    Article  Google Scholar 

  6. 6.

    WHO (2007) Assment of iodide deficiency disorders and monitoring their eleimination, 3rd edn. France

  7. 7.

    Udo Nitschke DBS (2015) A new HPLC method for the detection of iodie applied to natural samplrs of edible seaweeds and commercial seaweed food prodcuts. Food Chem 172:326–334

    Article  Google Scholar 

  8. 8.

    Zhang S, Schwehr KA, Ho YF, Xu C, Roberts KA, Kaplan DI, Brinkmeyer R, Yeager CM, Santschi PH (2010) A novel approach for the simultaneous determination of iodide, iodate and organo-iodide for 127I and 129I in environmental samples using gas chromatography−mass spectrometry. Environ Sci Technol 44:9042–9048

    CAS  Article  Google Scholar 

  9. 9.

    Max Haldimann BZ, Als C, Gerber H (1998) Direct determination of urinary iodine by inductively coupled plasma mass spectrometry sing isotope dilution with iodine-129. Clin Chem 44:817–824

    Article  Google Scholar 

  10. 10.

    Bermejo-Barrera MA-SaAB-B P (1999) Atomic absorption spectrometry as an alternate technique for iodine determination (1968-1998). J Anal At Spectrom 14:1009–1018

    CAS  Article  Google Scholar 

  11. 11.

    Tommaso AR, Cataldi RI, Laviola MC, Ciriello R (2005) Comparison of silver, gold and modified platinum electrodes for the electrochemical detection of iodide in urine samples following ion chromatography. J Chromatogr B 827:224–231

    Article  Google Scholar 

  12. 12.

    Cameron AMB, Bentley L, Hollenkamp AF, Mahon PJ, Zhang J (2015) Electrochemistry of iodide, iodine, and iodine monochloride in chloride containing nonhaloaluminate ionic liquids. Anal Chem 88:1915–1921

    Google Scholar 

  13. 13.

    Teeparuksapun K, Kanatharana P, Limbut W, Thammakhet C, Asawatreratanakul P, Mattiasson B, Wongkittisuksa B, Limsakul C, Thavarungkul P (2009) Disposable electrodes for capacitive immunosensor. Electroanalysis 21:1066–1074

    CAS  Article  Google Scholar 

  14. 14.

    Limbut W, Loyprasert S, Thammakhet C, Thavarungkul P, Tuantranont A, Asawatreratanakul P, Limsakul C, Wongkittisuksa B, Kanatharana P (2007) Microfluidic conductimetric bioreactor. Biosens Bioelectron 22:3064–3071

    CAS  Article  Google Scholar 

  15. 15.

    Dueraning A, Kanatharana P, Thavarungkul P, Limbut W (2016) An environmental friendly electrode and extended cathodic potential window for anodic stripping voltammetry of zinc detection. Electrochim Acta 221:133–143

    CAS  Article  Google Scholar 

  16. 16.

    Zhang SSX, Shoesmith DW, Wren JC (2007) Interaction of aqueous iodine species with Ag2O/Ag surface. J Electrochem Soc 154:F70–F76

    CAS  Article  Google Scholar 

  17. 17.

    Campos MLAM (1997) New approach to evaluating dissolved iodine speciation in natural water using cathodic stripping voltammetry and a storage strudy for preserving oidine species. Mar Chem 57:107–117

    CAS  Article  Google Scholar 

  18. 18.

    Estrella Espada-Bellido ZB, Salaum P, van den Berg CMG (2017) Determination of iodide and total iodine in estuarine waters by cathodiv stripping voltammetry using a vibrating silver amlgam microwire electrode. Talanta 174:165–170

    Article  Google Scholar 

  19. 19.

    Pretty S, Zhang X, Shoesmith DW, Wren JC (2008) Metal-oxide film conversions involving large anions. Proceedings of the International Youth Nuclear Congress p 12. [20]

  20. 20.

    Amin HHHMAMISSAERMA (2010) Comparative studies of the e lectrochemical behavior of silver electrode in chloride, bromide and iodide aqueous solutions. Electrochem Sci 5:278–294

    Google Scholar 

  21. 21.

    Kuleshova SVKNV, Pashanova SO (2007) Flow-injection determination of iodide with a silver electrode. Anal Chem 62:683–687

    CAS  Article  Google Scholar 

  22. 22.

    Promsuwan K, Thayarungkul P, Kanatharana P, Limbut W (2017) Flow injection amperometric nitrite sensor based on silver microcubics-poly (acrylic acid)/poly (vinyl alcohol) modified screen printed carbon electrode. Electrochim Acta 232:357–369

    CAS  Article  Google Scholar 

  23. 23.

    W.H. Organization (2007) Assessment of iodine deficiency disorders and monitoring their elimination. France

  24. 24.

    Sagadevan S (2016) Synthesis, structural, surface morphology, optical and electrical properties of silver oxide nanoparticles. Nanoelectronics and Materials 9

  25. 25.

    Jovic BMJVD (2004) Electrochemical formation and characterizatio of Ag2O. J Serb Chem Soc 69:153–166

    CAS  Article  Google Scholar 

  26. 26.

    Sayed HHH, Abd El Rehim S, Ibrahim MAM, Amin MA (1998) Electrochemical behavior of a silver electrode in NaOH solution. Monatshefte Gur Chemie 129:1103–1117

    Google Scholar 

  27. 27.

    Huisman JMMDaF (1980) Electrochemical formation and reduction of silver oxide in alkaline media. J Electroanal Chem Interfacial Electrochem 115:211–224

    Article  Google Scholar 

  28. 28.

    Bruce PMP, Riekkola ML (1998) Practical method validation: validation sufficient for an analysis method. Mikrochim Acta 128:93–106

    CAS  Article  Google Scholar 

  29. 29.

    K. Kalra, Method development and validation of analytical procedures, 2011,

    Book  Google Scholar 

  30. 30.

    Yang LZL, Li G, Ye B (2016) Simple and rapid determination of trace iodide by cathodic stripping voltammetry. Talanta 147:634–640

    CAS  Article  Google Scholar 

  31. 31.

    Stephane Fierro CC (2013) Yasuaki Einaga, Simultineous detection of iodine and iodide on boron doped diamon electrode. Talanta 103:33–37

    Article  Google Scholar 

  32. 32.

    Khodari UBaAAHB M (2015) Screen-printed electrodes for amperometric detection of iodide. Electroanalysis 27:281–284

    CAS  Article  Google Scholar 

  33. 33.

    Eunbyul Cho AP, Benice O, Holmberg S, Madou M, Ghazinejad AM (2018) Rapid iodine sensing on mechanically treated carbon nanofibers. Sensors 18

  34. 34.

    Hugo Cunha-Silva MJA-M (2019) Cathodic stripping voltammetric determination of iodide using disposable sensors. Talanta 199:262–269

    Article  Google Scholar 

  35. 35.

    Tse-Wei Chen T-HT, Chen S-M, Lin K-C (2011) Using PEDOT film modified electrode to monitor iodide and its enhancement of arsenite sensing. Electrochem Sci 6:2043–2057

    Google Scholar 

  36. 36.

    Natalya OAA, Shvedene V, Baulin VE, Tomilova LG, Pletnev IV (2010) Iodide-selective screen-printed electrodes based on low-melting ionic solids and metallated phthalocyanine. Electroanalysis 23:1067–1072

    Google Scholar 

  37. 37.

    Mei-Hsin Chiu W-LC, Muthuraman G, Hsu C-T, Chung H-H, Zen J-M (2009) A disposable screen-printed silver strip sensor for single drop analysis of halide in biological samples. Biosens Bioelectron 24:3008–3013

    Article  Google Scholar 

  38. 38.

    Toh KTHS, Batchelor-McAuley C, Compton ARG (2014) Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concep. Analyst 139

  39. 39.

    Maria Cuartero GAC, Bakke E (2015) Paper-based thin-layer coulometric sensor for halide determination. Anal Chem 87:1981–1990

    Article  Google Scholar 

  40. 40.

    Bujes-Garrido DI-BJ, Heras A, Colina A, Arcos-Martínez MJ (2018) Determination of halides using Ag nanoparticles-modified disposable electrodes. A first approach to a wearable sensor for quantification of chloride ions. Anal Chim Acta 1–7

  41. 41.

    AOAC, Appendix F: guidelines for standard method performance requirements, (2016)

    Google Scholar 

  42. 42.

    Rodtichoti Wannapob PT, Dawan S, Numnuam A, Limbut W, Kanatharana P (2017) A simple and highly stable porous gold-based electrochemical sensor for bisphenol A detection. Electroanalysis 29:472–480

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr.Thomas Duncan Coyne for his help in preparing the manuscript.

Funding

The authors received financial support from the Thailand Research Fund, Prince of Songkla University and Faculty of Science, Prince of Songkla University (Grant No. BRG6080009); the Center of Excellence for Innovation in Chemistry (PERCH-CIC); and the Ministry of Higher Education, Science, Research and Innovation; the Trace Analysis and Biosensor Research Center (TAB-RC), Prince of Songkla University; and the Department of Applied Science, Department of Chemistry Faculty of Science and Graduate School, Prince of Songkla University, Hat Yai, Songkhla.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Warakorn Limbut.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 87.6 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khunseeraksa, V., Kongkaew, S., Thavarungkul, P. et al. Electrochemical sensor for the quantification of iodide in urine of pregnant women. Microchim Acta 187, 591 (2020). https://doi.org/10.1007/s00604-020-04488-0

Download citation

Keywords

  • Electrochemical iodide sensor
  • Urine analysis
  • Pregnant women
  • Silver oxide microparticles
  • Cathodic stripping voltammetry