Skip to main content
Log in

A colorimetric probe based on 4-mercaptophenol and thioglycolic acid-functionalized gold nanoparticles for determination of phytic acid and Fe(III) ions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

As a first of its kind, we developed a highly sensitive colorimetric nanoprobe for phytic acid (PA) and Fe(III) ion detection based on 4-mercaptophenol (4MP) and thioglycolic acid (TGA)-functionalized gold nanoparticles {AuNPs@(4MP-TGA)}. AuNPs were easily derivatized by 4MP and TGA through –SH binding to gold. Fe(III) ions possibly are bound first to the phenolate groups of 4MP-AuNPs, and further coordinated several nanoparticles via the carboxylate groups of TGA-AuNPs to cause aggregation, resulting in a red-to-purple color change and a bathochromic shift in the SPR absorption band of the nanoprobe. With the addition of PA to the AuNPs@(4MP-TGA)-Fe(III) system, the aggregated particles were released due to strong complex formation between Fe(III) and PA, resulting in a restoration of the color (purple-to-red) and of the SPR band to the original 520 nm wavelength maximum. Thus, the 650-nm absorption is attenuated and the 520-nm band is enhanced upon PA-Fe(III) chelation. This means that the absorption ratio A650/A520 is an indication of Fe(III) whereas the reverse ratio A520/A650 of the PA content of complex samples. The limits of detection (LOD) of the AuNPs@(4MP-TGA) were 1.0 μM for Fe(III) ions and 0.15 μM for PA. Phytic acid extracted from bean grains was determined with the proposed probe, yielding good recoveries. In addition, common metal ions, anions, and several biomolecules did not show an adverse effect on the nanoprobe performance for ferric ions and phytate. The developed method was statistically validated against a LC–MS/MS literature method.

Mercaptophenolate (4MP)- and thioglycolic acid (TGA)-functionalized gold nanoparticles were prepared as nanoprobes to detect Fe(III) ions through nanoparticle aggregation accompanied by red-to-purple color shift. The same nanoprobe determined phytic acid in food through disaggregation of Fe(III)-aggregated nanoparticles by strong Fe(III)-phytate chelation and restoration of solution color from purple to red.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. March JG, Simonet BM, Grases (2001) Determination of phytic acid by gas chromatography-mass spectroscopy: application to biological samples. J Chromatogr B 757:247–255. https://doi.org/10.1016/S0378-4347(01)00155-4

    Article  CAS  Google Scholar 

  2. Chen Y, Chen J, Ma K, Cao S, Chen X (2007) Fluorimetric determination of phytic acid in urine based on replacement reaction. Anal Chim Acta 605:185–191. https://doi.org/10.1016/j.aca.2007.10.041

    Article  CAS  PubMed  Google Scholar 

  3. Shi L, Arntfield SD, Nickerson M (2018) Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Res Int 107:660–668. https://doi.org/10.1016/j.foodres.2018.02.056

    Article  CAS  PubMed  Google Scholar 

  4. Schlemmer U, Frolich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53:330–375. https://doi.org/10.1002/mnfr.200900099

    Article  Google Scholar 

  5. Zhang W, Gu H, Xi L, Zhang Y, Hu Y, Zhng T (2012) Preparation of phytic acid and its characteristics copper inhibitor. Energy Procedia 17:1641–1647. https://doi.org/10.1016/j.egypro.2012.02.292

    Article  CAS  Google Scholar 

  6. Li L, Fu Q, Xia M, Xin L, Shen H, Li G, Xie Y (2018) Inhibition of P-glycoprotein mediated efflux in Caco-2 cells by phytic acid. J Agric Food Chem 66:988–998. https://doi.org/10.1021/acs.jafc.7b04307

    Article  CAS  PubMed  Google Scholar 

  7. Park HR, Ahn HJ, Kim SH, Lee CH, Byun MW, Lee GW (2006) Determination of the phytic acid levels in infant foods using different analytical methods. Food Control 17:727–732. https://doi.org/10.1016/j.foodcont.2005.05.007

    Article  CAS  Google Scholar 

  8. Liu T, He L, Valiente M, Lopez-Mesas M (2017) Fast determination of bioactive phytic acid and pyrophosphate in walnuts using microwave accelerated extraction. Food Chem 221:771–775. https://doi.org/10.1016/j.foodchem.2016.11.105

    Article  CAS  PubMed  Google Scholar 

  9. Foster SR, Dilworth LL, Omoruyi FO, Thompson R, Alexander-Lindo RL (2017) Pancreatic and renal function in streptozotocin-induced type 2 diabetic rats administered combined inositol hexakisphosphate and inositol supplement. Biomed Pharmacother 96:72–77. https://doi.org/10.1016/j.biopha.2017.09.126

    Article  CAS  PubMed  Google Scholar 

  10. Macbeth MR, Schubert HL, VanDemark AP, Lingam AT, Hill CP, Bass BL (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309:1534–1539. https://doi.org/10.1126/science.1113150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dost K, Tokul O (2006) Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography. Anal Chim Acta 558:22–27. https://doi.org/10.1016/j.aca.2005.11.035

    Article  CAS  Google Scholar 

  12. Mak WC, Ng YM, Chan C, Kwong WK, Renneberg R (2004) Novel biosensors for quantitative phytic acid and phytase measurement. Biosens Bioelectren 19:1029–1035. https://doi.org/10.1016/j.bios.2003.10.005

    Article  CAS  Google Scholar 

  13. Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Iron-catalyzed hydroxyl radical formation: stringent requirement for free iron coordination site. J Biol Chem 259:3620–3624

    CAS  PubMed  Google Scholar 

  14. Lopez HW, Leenhardt F, Coudray C, Remesy C (2002) Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Technol 37:727–739. https://doi.org/10.1046/j.1365-2621.2002.00618.x

    Article  CAS  Google Scholar 

  15. Perello J, Isern B, Munoz JA, Valiente M, Grases F (2004) Determination of phytate in urine by high-performance liquid chromatography-mass spectrometry. Chromatographia 20:265–268. https://doi.org/10.1365/s10337-004-0379-5

    Article  CAS  Google Scholar 

  16. Dost K, Karaca G (2016) Evaluation of phytic acid content of some tea and nut products by reserve-phase high performance liquid chromatography/visible detector. Food Anal Methods 9:1391–1397. https://doi.org/10.1007/s12161-015-0319-z

    Article  Google Scholar 

  17. Munoz JA, Valiente M (2003) Determination of phytic acid in urine by inductively coupled plasma mass spectrometry. Anal Chem 75:6374–6378. https://doi.org/10.1021/ac0345805

    Article  CAS  PubMed  Google Scholar 

  18. Rodrigues VC, de Moraes ML, Brisolari A, Soares JC, Ferreira M, Gonçalves D (2003) Polypyrrole/phytase amperometric biosensors for the determination of phytic acid in standard solutions. Sensor Actuators B Chem 160:222–226. https://doi.org/10.1016/j.snb.2011.07.038

    Article  CAS  Google Scholar 

  19. Kolozsvari B, Firth S, Saiardi A (2015) Raman spectroscopy detection of phytic acid in plant seeds reveals the absence of inorganic polyphosphate. Mol Plant 8:826–828 https://doi.org/10.1016/j.molp.2015.01.015

    Article  CAS  Google Scholar 

  20. Wang Q, Ding C, Zhou Y, Luo Z, Li J (2018) Universal and biocompatible hydroxypatite coating induced by phytic acid-metal complex multilayer. Colloids Surf B Biointerfaces 169:478–485. https://doi.org/10.1016/j.colsurfb.2018.05.057

    Article  CAS  PubMed  Google Scholar 

  21. Cao SH, Dong NA, Chen J (2011) Synchronous fluorescence determination of phytic acid in foodstuffs and urine based on replacement reaction. Phytochem Anal 22:119–123. https://doi.org/10.1002/pca.1254

    Article  CAS  PubMed  Google Scholar 

  22. Ular N, Üzer A, Durmazel S, Erçağ E, Apak R (2018) Diaminocyclohexane-functionalized/thioglycolic acid-modified gold nanoparticle-based colorimetric sensing of trinitrotoluene and tetryl. ACS Sensors 3:2355–2342. https://doi.org/10.1021/acssensors.8b00709

    Article  CAS  Google Scholar 

  23. Tur F, Tur E, Lentheric I, Mendoza P, Encabo M, Isern B, Perello J (2013) Validation of an LC-MS bioanalytical method for quantification of phytate levels in rat, dog and human plasma. J Chromatogr B 928:146–154. https://doi.org/10.1016/j.jchromb.2013.03.023

    Article  CAS  Google Scholar 

  24. Diouf-Lewis A, Commereuc S, Verney V (2017) Toward greener polyolefins: antioxidant effect of phytic acid from cereal waste. Eur Polym J 96:190–199. https://doi.org/10.1016/j.eurpolymj.2017.09.014

    Article  CAS  Google Scholar 

  25. Turkevich J, Stevenson PC, Hillier JA (1951) Study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. https://doi.org/10.1039/DF9511100055

    Article  Google Scholar 

  26. Chen Y, Chen J, Luo Z, Ma K, Chen X (2009) Synchronous fluorescence analysis of phytate in food. Microchim Acta 164:35–40. https://doi.org/10.1007/s00604-008-0026-1

    Article  CAS  Google Scholar 

  27. Wali LA, Hasan KK, Alwan AM (2019) Rapid and highly efficient detection of ultra-low concentration of penicillin G by gold nanoparticles/porous silicon SERS active substrate. Spectrochim Acta A Mol Biomol Spectrosc 206:31–36. https://doi.org/10.1016/j.saa.2018.07.103

    Article  CAS  PubMed  Google Scholar 

  28. Wali LA, Hasan KK, Alwan AM (2020) An investigation of efficient detection of ultra-low concentration of penicillins in milk using AuNPs/PSi hybrid structure. Plasmonics 15:1–9. https://doi.org/10.1007/s11468-019-01096-4

    Article  CAS  Google Scholar 

  29. Nguyen KC (2012) Quantitative analysis of COOH-terminated alkanethiol SAMs on gold nanoparticle surfaces. Adv Nat Sci Nanosci Nanotechnol 3:1–5. https://doi.org/10.1088/2043-6262/3/4/045008

    Article  CAS  Google Scholar 

  30. Memon SS, Nafady A, Solangi AR, Al-Enizi AM, Sirajuddin SMR, Sherazi STH, Memon S, Arain M, Abrof MI, Khattak MI (2018) Sensitive and selective aggregation based colorimetric sensing of Fe3+ via interaction with acetyl salicylic acid derived gold nanoparticles. Sensor Actuators B Chem 259:1006–1012. https://doi.org/10.1016/j.snb.2017.12.162

    Article  CAS  Google Scholar 

  31. Danehy JP, Parameswaran KN (1968) The acidic dissociation constants of a number of thiols have been determined and collated with those already recorded in the literature. J Chem Eng Data 13:386–389. https://doi.org/10.1021/je60038a025

    Article  CAS  Google Scholar 

  32. Sakloetsakun D, Hombach JM, Bernkop-Schnürch A (2009) In situ gelling properties of chitosan-thioglycolic acid conjugate in the presence of oxidizing agents. Biomaterials 30:6151–6157. https://doi.org/10.1016/j.biomaterials.2009.07.060

    Article  CAS  PubMed  Google Scholar 

  33. Shears SB (2015) Inositol pyrophosphates: why so many phosphates? Adv Biol Regul 57:203–216. https://doi.org/10.1016/j.jbior.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  34. Evans WJ, McCourtney EJ, Shrager RI (1982) Titration studies of phytic acid. J Am Oil Chem Soc 59:189–191. https://doi.org/10.1007/BF02680274

    Article  CAS  Google Scholar 

  35. Crea F, De Stefano C, Milea D, Sammartano S (2008) Formation and stability of phytate complexes in solution. Coord Chem Rev 252:1108–1120. https://doi.org/10.1016/j.ccr.2007.09.008

    Article  CAS  Google Scholar 

  36. Torres J, Domínguez S, Cerdá MF, Obal G, Mederos A, Irvine RF, Díaz A, Kremer C (2005) Solution behaviour of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic/nuclear conditions. J Inorg Biochem 99:828–840. https://doi.org/10.1016/j.jinorgbio.2004.12.011

    Article  CAS  PubMed  Google Scholar 

  37. Gouger S, Stuehr J (1974) Kinetics of Iron(III) interactions with phenol and o-aminophenol. Inorg Chem 13:379–384

    Article  CAS  Google Scholar 

  38. Gao Z, Wang L, Su R, Huang R, Qi W, He Z (2015) A carbon dot-based "off-on" fluorescent probe for highly selective and sensitive detection of phytic acid. Biosens Bioelectron 70:232–238. https://doi.org/10.1016/j.bios.2015.03.043

    Article  CAS  PubMed  Google Scholar 

  39. Graf E, Empson KL, Eaton JW (1987) Phytic acid, a natural antioxidant. J Biol Chem 262:11647–11650

    CAS  PubMed  Google Scholar 

  40. Crea F, Stefano CD, Milea D, Sammartano S (2008) Formation and stability of phytate complexes in solution. Coord Chem 252:1108–1120. https://doi.org/10.1016/j.ccr.2007.09.008

    Article  CAS  Google Scholar 

  41. Alwana AM, Yousif AA, Walic LA (2017) The growth of the silver nanoparticles on the mesoporous silicon and macroporous silicon: a comparative study. Indian J Pure Appl Phys 55:813–820

    Google Scholar 

  42. Wali LA, Alwan AM, Dheyab AB, Hashim DA (2019) Excellent fabrication of Pd-Ag NPs/PSi photocatalyst based on bimetallic nanoparticles for improving methylene blue photocatalytic degradation. Optik 179:708–717. https://doi.org/10.1016/j.ijleo.2018.11.011

    Article  CAS  Google Scholar 

  43. Atkins RC (1975) Colorimetric determination of Iron in vitamin supplement tablets a general chemistry experiment. J Chem Educ 52:550

    Article  CAS  Google Scholar 

  44. Nitin N, LaConte LEW, Zurkiya O, Hu X, Bao G (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem 9:706–712. https://doi.org/10.1007/s00775-004-0560-1

    Article  CAS  PubMed  Google Scholar 

  45. Osunlaja AA, Idris SO, Iyun JF (2012) Mechanism of the reduction of methylene blue by thiourea in aqueous acidic medium. Int J ChemTech Res 4:609–617

    CAS  Google Scholar 

  46. Zhang X, Servos MR, Liu J (2012) Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization. J Am Chem Soc 134:9910–9913. https://doi.org/10.1021/ja303787e

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reşat Apak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3.10 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koç, Ö.K., Üzer, A. & Apak, R. A colorimetric probe based on 4-mercaptophenol and thioglycolic acid-functionalized gold nanoparticles for determination of phytic acid and Fe(III) ions. Microchim Acta 187, 586 (2020). https://doi.org/10.1007/s00604-020-04478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04478-2

Keywords

Navigation