Photoelectrochemical immunoassay platform based on MoS2 nanosheets integrated with gold nanostars for neuron-specific enolase assay


MoS2 nanosheets were prepared by exfoliating MoS2 bulk crystals with ultrasonication in N-methylpyrrolidone and were integrated with gold nanostars (AuNS) to fabricate an AuNS/MoS2 nanocomposite. All nanomaterials were characterized by transmission electron microscope, scanning electron microscope, ultraviolet-visible spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. AuNS/MoS2 nanocomposites were coated onto a glassy carbon electrode (GCE) surface to construct a nanointerface for immobilizing neuron-specific enolase antibody (anti-NSE) thus forming a photoelectrochemical immunoassay system. AuNS can significantly promote the photoelectric conversion of MoS2 nanosheets improving the performance for a photoelectrochemical assay. Being illuminated with white light LED and controlling the potential at 0.05 V (vs. SCE), the photocurrent generated from anti-NSE(BSA)/AuNS/MoS2/GCE using 0.15 mol L−1 ascorbic acid as electron donor can be recorded with amperometry and used as an output signal for NSE quantitative assay. Under optimized experimental conditions, the photocurrent variation for the affinity-binding NSE is proportional to the logarithm of NSE concentration in the range 5.0 pg mL-1   to 1.5 ng mL−1 with a detection limit of 3.5 pg mL−1 (S/N = 3). The practicability of the PEC immunoassay system was evaluated by determining NSE in clinical serum samples. The recoveries ranged from 93.0 to 103% for the determination of NSE in serum samples with a standard addition method. The PEC immunoassay system possesses good accuracy for determining NSE in real samples.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Li H, Xiao QY, Lv JX, Lei Q, Huang YJ (2017) Dopamine modified hyperbranched TiO2 arrays based ultrasensitive photoelectrochemical immunosensor for detecting neuron specific enolase. Anal Biochem 531:48–55

    CAS  PubMed  Google Scholar 

  2. 2.

    Fu X, Xu K, Feng X (2016) Synthesis of sunflower-like gold nanostructures and their application in electrochemical immunoassays using the nanogold-triggered hydrogen evolution reaction. Anal Methods 8(5):958–961

    CAS  Google Scholar 

  3. 3.

    Eyre H, Baune BT (2012) Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrino 37(9):1397–1416

    CAS  Google Scholar 

  4. 4.

    Wiener CD, Jansen K, Ghisleni G, Kaster MP, Souza LDD, Lara DR, Portela LV, da Silva RA, Oses JP (2013) Reduced serum levels of neuron specific enolase (NSE) in drug-naive subjects with major depression and bipolar disorder. Neurochem Res 38(7):1394–1398

    CAS  PubMed  Google Scholar 

  5. 5.

    Busnello JV, Leke R, Oses JP, Feier G, Bruch RS, Quevedo J, Kapczinski F, Souza DO, Portela LVC (2006) Acute and chronic electroconvulsive shock in rats: effects on peripheral markers of neuronal injury and glial activity. Life Sci 78(26):3013–3017

    CAS  PubMed  Google Scholar 

  6. 6.

    Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V, Vargas RD, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421(1):33–36

    CAS  PubMed  Google Scholar 

  7. 7.

    Brandel JP, Beaudry P, Delasnerie-Lauprêtre N, Laplanche JL (1999) Creutzfeldt-Jakob disease: diagnostic value of protein 14-3-3 and neuronal specific enolase assay in cerebrospinal fluid. Rev Neurol 155(2):148–151

    CAS  PubMed  Google Scholar 

  8. 8.

    Fu XL, Meng M, Zhang Y, Yin YM, Zhang XS, Xi RM (2012) Chemiluminescence enzyme immunoassay using magnetic nanoparticles for detection of neuron specific enolase in human serum. Anal Chim Acta 722:114–118

    CAS  PubMed  Google Scholar 

  9. 9.

    Cao ZJ, Li H, Lau CW, Zhang YH (2011) Cross-talk-free simultaneous fluoroimmunoassay of two biomarkers based on dual-color quantum dots. Anal Chim Acta 698(1):44–50

    CAS  PubMed  Google Scholar 

  10. 10.

    Wang X, Wang YY, Ye XX, Wu TH, Deng HP, Wu P, Li CY (2018) Sensing platform for neuron specific enolase based on molecularly imprinted polymerized ionic liquids in between gold nanoarrays. Biosens Bioelectron 99:34–39

    CAS  PubMed  Google Scholar 

  11. 11.

    Ai YL, Li X, Zhang L, Zhong WY, Wang J (2018) Highly sensitive electrochemiluminescent immunoassay for neuron-specific enolase amplified by single-walled carbon nanohorns and enzymatic biocatalytic precipitation. J Electroanal Chem 818:257–264

    CAS  Google Scholar 

  12. 12.

    Barton AC, Davis F, Higson SPJ (2008) Labeless immunosensor assay for the stroke marker protein neuron specific enolase based upon an alternating current impedance protocol. Anal Chem 80(24):9411–9416

    CAS  PubMed  Google Scholar 

  13. 13.

    Yu TX, Cheng W, Li Q, Luo CH, Li Y, Zhang DC, Yan YB, Ding SJ, Ju HX (2012) Electrochemical immunosensor for competitive detection of neuron specific enolase using functional carbon nanotubes and gold nanoprobe. Talanta 93:433–438

    CAS  PubMed  Google Scholar 

  14. 14.

    Hou CL, Herr AE (2010) Ultrashort separation length homogeneous electrophoretic immunoassays using on-chip discontinuous polyacrylamide gels. Anal Chem 82(8):3343–3351

    CAS  PubMed  Google Scholar 

  15. 15.

    Lv R, Robinson JA, Schaak RE, Sun D, Sun YF, Mallouk TE, Terrones M (2014) Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Acc Chem Res 48(1):56–64

    PubMed  Google Scholar 

  16. 16.

    Sun HF, Chao J, Zuo XL, Su S, Liu XF, Yuwen LH, Fan CH, Wang LH (2014) Gold nanoparticles-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv 4(52):27625–27629

    CAS  Google Scholar 

  17. 17.

    Dolinska J, Chidambaram A, Taleat Z, Adamkiewicz W, Lisowski W, Palys B, Holdynski M, Andryszewski T, Sashuk V, Rassaei L, Opallo M (2015) Decoration of MoS2 nanopetal stacks with positively charged gold nanoparticles for synergistic electrocatalytic oxidation of biologically relevant compounds. Electrochim Acta 182:659–667

    CAS  Google Scholar 

  18. 18.

    Kuru C, Choi C, Kargar A, Choi DY, Kim YJ, Liu CH, Yavuz S, Jin S (2015) MoS2 nanosheet-Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen. Adv Sci 2(4):1500004

    Google Scholar 

  19. 19.

    Cheng Z, He B, Zhou L (2015) A general one-step approach for in situ decoration of MoS2 nanosheets with inorganic nanoparticles. J Mater Chem A 3(3):1042–1048

    CAS  Google Scholar 

  20. 20.

    Wang TY, Zhuo JQ, Chen Y, Du KZ, Papakonstantinou P, Zhu ZW, Shao YH, Li MX (2014) Synergistic catalytic effect of MoS2 nanoparticles supported on gold nanoparticle films for a highly efficient oxygen reduction reaction. ChemCatChem 6(7):1877–1881

    CAS  Google Scholar 

  21. 21.

    Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275

    PubMed  Google Scholar 

  22. 22.

    Li F, Zhang L, Li J, Lin XQ, Li XZ, Fang YY, Huang JW, Li WZ, Tian M, Jin J, Li R (2015) Synthesis of Cu-MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Power Sources 292:15–22

    CAS  Google Scholar 

  23. 23.

    Yang MH, Ko S, Im JS, Choi BG (2015) Free-standing molybdenum disulfide/graphene composite paper as a binder- and carbon-free anode for lithium-ion batteries. J Power Sources 228:76–81

    Google Scholar 

  24. 24.

    Yang X, Liu WQ, Xiong M, Zhang YY, Liang T, Yang JT, Xu MS (2014) Au nanoparticles on ultrathin MoS2 sheets for plasmonic organic solar cells. J Mater Chem A 2(36):14798–14806

    CAS  Google Scholar 

  25. 25.

    Li JC, Zhang YP, Zhang S, Huang XD (2015) Sulfonated polyimide/s-MoS2 composite membrane with high proton selectivity and good stability for vanadium redox flow battery. J Membr Sci 490:179–189

    CAS  Google Scholar 

  26. 26.

    Wang GX, Bao WJ, Wang J, Lu QQ (2013) Immobilization and catalytic activity of horseradish peroxidase on molybdenum disulfide nanosheets modified electrode. Electrochem Commun 35:146–148

    Google Scholar 

  27. 27.

    Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11(11):4826–4830

    CAS  PubMed  Google Scholar 

  28. 28.

    Choi JW, Chen HR, Li FR, Yang LM, Kim SS, Naik RR, Ye PD, Choi JH (2015) Nanomanufacturing of 2D transition metal dichalcogenide materials using self-assembled DNA nanotubes. Small 11(41):5520–5527

    CAS  PubMed  Google Scholar 

  29. 29.

    Splendiani A, Sun L, Zhang YB, Li TS, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10(4):1271–1275

    CAS  PubMed  Google Scholar 

  30. 30.

    Brivio J, Alexander DTL, Kis A (2011) Ripples and layers in ultrathin MoS2 membranes. Nano Lett 11(12):5148–5153

    CAS  PubMed  Google Scholar 

  31. 31.

    Wang YH, He LL, Huang KJ, Chen YX, Wang SY, Liu ZH, Li D (2019) Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays. Analyst 144:2849–2866

    CAS  PubMed  Google Scholar 

  32. 32.

    Scharf TW, Goeke RS, Kotula PG, Prasad SV (2013) Synthesis of Au-MoS2 nanocomposites: thermal and friction-induced changes to the structure. ACS Appl Mater Interfaces 5(22):11762–11767

    CAS  PubMed  Google Scholar 

  33. 33.

    Sun HF, Chao J, Zuo XL, Su S, Liu XF, Fan CH, Wang LH (2014) Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv 4(52):27625–27629

    CAS  Google Scholar 

  34. 34.

    Wang Y, Chen F, Ye X, Wu T, Wu K, Li C (2017) Photoelectrochemical immunosensing of tetrabromobisphenol A based on the enhanced effect of dodecahedral gold nanocrystals/MoS2 nanosheets. Sensors Actuators B Chem 245:205–212

    CAS  Google Scholar 

  35. 35.

    Tan Y, Li M, Ye X, Wang Z, Wang Y, Li C (2018) Ionic liquid auxiliary exfoliationof WS2 nanosheets and the enhanced effect of hollow gold nanospheres on their photoelectrochemical sensing towards human epididymis protein 4. Sensors Actuators B Chem 262:982–990

    CAS  Google Scholar 

  36. 36.

    Su QQ, Ma XY, Dong J, Jiang CY, Qian WP (2011) A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars. ACS Appl Mater Interfaces 3(6):1873–1879

    CAS  PubMed  Google Scholar 

  37. 37.

    Cheng LC, Huang JH, Chen HM, Chen HM, Lai TC, Yang KY, Liu RS, Hsiao M, Chen CH, Her LJ, Tsai DP (2012) Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J Mater Chem 22(5):2244–2253

    Google Scholar 

  38. 38.

    Cui QL, Xia BH, Mitzscherling S, Masic A, Li LD, Bargheer M, Mohwald H (2015) Preparation of gold nanostars and their study in selective catalytic reactions. Colloids Surf A Physicochem Eng Asp 465:20–25

    CAS  Google Scholar 

  39. 39.

    Atta S, Beetz M, Fabris L (2019) Understanding the role of AgNO3 concentration and seed morphology in the achievement of tunable shape control in gold nanostars. Nanoscale 11(6):2946–2958

    CAS  PubMed  Google Scholar 

  40. 40.

    Liu AH, Wang GQ, Wang F, Zhang Y (2017) Gold nanostructures with near-infrared plasmonic resonance: synthesis and surface functionalization. Coord Chem Rev 336:28–42

    CAS  Google Scholar 

  41. 41.

    Li YX, Ma J, Ma ZF (2013) Synthesis of gold nanostars with tunable morphology and their electrochemical application for hydrogen peroxide sensing. Electrochim Acta 108:435–440

    CAS  Google Scholar 

  42. 42.

    Du XJ, Dai LM, Jiang D, Li HN, Hao N, You TY, Mao HP, Wang K (2017) Gold nanrods plasmon-enhanced photoelectrochemical aptasensing based on hematite/N-doped graphene films for ultrasensitive analysis of 17 β-estradiol. Biosens Bioelectron 91:706–713

    CAS  PubMed  Google Scholar 

  43. 43.

    Hu Y, Huang YJ, Wang ZG, Wang YY, Ye XX, Wong WL, Li CY, Sun D (2018) Gold/WS2 nanocomposites fabricated by in-situ ultrasonication and assembling for photoelectrochemical immunosensing of carcinoembryonic antigen. Microchim Acta 185(12):570

    Google Scholar 

Download references


The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 21675175, 21874157 and 21275166), Major Projects of Technical Innovation of Hubei Province (No. 2017ACA172), the Natural Science Foundation of Hubei Province (No. 2018CFB617 and 2015CFA092), and Jiangmen Program for Innovative Research Team (No. 2018630100180019806).

Author information



Corresponding authors

Correspondence to Haiyan Li or Chunya Li.

Ethics declarations

This study was approved by the Institutional Ethics Committee of Renmin Hospital of Wuhan University.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 14797 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Wang, Y., Wong, W. et al. Photoelectrochemical immunoassay platform based on MoS2 nanosheets integrated with gold nanostars for neuron-specific enolase assay. Microchim Acta 187, 480 (2020).

Download citation


  • Photoelectrochemical immunoassay
  • Neuron-specific enolase
  • MoS2 nanosheet
  • Gold nanostar