Skip to main content
Log in

Gold nanoparticle–modified black phosphorus nanosheets with improved stability for detection of circulating tumor cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Gold nanoparticle (AuNP)–anchored BP nanosheets were synthesized through in situ growth of AuNPs onto BP. Due to the strong chelating ability of P or phosphorus oxides with AuNPs, the stability of BP is improved. As proof-of-concept demonstration of the functionalized BP, electrochemical detection of circulating tumor cells (CTCs) based on BP@AuNPs@aptamer as a probe combined with immunomagnetic separation is reported. The aptamer can specifically bind with CTCs, while the phosphorus oxides including phosphite ion and phosphate ion (PxOy species) on BP and aptamer can react with molybdate to generate an electrochemical current, leading to dual signal amplification. The biosensor is applied to MCF-7 cell detection and displays good analytical performance with a detection limit of 2 cell mL−1. Furthermore, the practicality of this biosensor was validated through sensitive determination of MCF-7 cells in human blood. Therefore, the reported biosensor could be applied to detect other biomarkers, offering an ultrasensitive strategy for clinical diagnostics.

Electrochemical detection of circulating tumor cells based on gold nanoparticle–modified black phosphorus nanosheets is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA-Cancer J Clin 65(1):5–29

    Article  PubMed  Google Scholar 

  2. Wan Y, Zhou Y-G, Poudineh M, Safaei TS, Mohamadi RM, Sargent EH, Kelley SO (2014) Highly specific electrochemical analysis of cancer cells using multi-nanoparticle labeling. Angew Chem Int Ed 53(48):13145–13149

    Article  CAS  Google Scholar 

  3. Tang S, Shen H, Hao Y, Huang Z, Tao Y, Peng Y, Guo Y, Xie G, Feng W (2018) A novel cytosensor based on Pt@Ag nanoflowers and AuNPs/Acetylene black for ultrasensitive and highly specific detection of circulating tumor cells. Biosens Bioelectron 104:72–78

    Article  CAS  PubMed  Google Scholar 

  4. Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115(19):10575–10636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gu Y, Ju C, Li Y, Shang Z, Wu Y, Jia Y, Niu Y (2015) Detection of circulating tumor cells in prostate cancer based on carboxylated graphene oxide modified light addressable potentiometric sensor. Biosens Bioelectron 66:24–31

    Article  CAS  PubMed  Google Scholar 

  6. Hou J-M, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F, Dive C (2011) Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol 178(3):989–996

    Article  PubMed  PubMed Central  Google Scholar 

  7. Warkiani ME, Guan G, Luan KB, Lee WC, Bhagat AA, Chaudhuri PK, Tan DS, Lim WT, Lee SC, Chen PC, Lim CT, Han J (2014) Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14(1):128–137

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Xia J, Wang C, Liu L, Zhu S, Feng W, Li L (2017) Preparation of novel fluorescent nanocomposites based on Au nanoclusters and their application in targeted detection of cancer cells. ACS Appl Mater Interfaces 9(51):44856–44863

    Article  CAS  PubMed  Google Scholar 

  9. Sawada T, Watanabe M, Fujimura Y, Yagishita S, Shimoyama T, Maeda Y, Kanda S, Yunokawa M, Tamura K, Tamura T, Minami H, Koh Y, Koizumi F (2016) Sensitive cytometry based system for enumeration, capture and analysis of gene mutations of circulating tumor cells. Cancer Sci 107(3):307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang H, Zhou C, Sun X, Jian Y, Kong Q, Cui K, Ge S, Yu J (2018) Polyhedral-AuPd nanoparticles-based dual-mode cytosensor with turn on enable signal for highly sensitive cell evalution on lab-on-paper device. Biosens Bioelectron 117:651–658

    Article  CAS  PubMed  Google Scholar 

  11. Han S-I, Han K-H (2015) Electrical detection method for circulating tumor cells using graphene nanoplates. Anal Chem 87(20):10585–10592

    Article  CAS  PubMed  Google Scholar 

  12. Shen C, Liu S, Li X, Yang M (2019) Electrochemical detection of circulating tumor cells based on DNA generated electrochemical current and rolling circle amplification. Anal Chem 91(18):11614–11619

    Article  CAS  PubMed  Google Scholar 

  13. Cao S, Wang Q, Xiao X, Li T, Yang M (2019) Electrochemical immunoassay for the tumor marker CD25 by coupling magnetic sphere-based enrichment and DNA based signal amplification. Microchim Acta 186(6):352–356

  14. Liu S, Jiang X, Yang M (2019) Electrochemical sensing of L-ascorbic acid by using a glassy carbon electrode modified with a molybdophosphate film. Microchim Acta 186(7):445–451

  15. Jiang X, Liu S, Yang M, Rasooly A (2019) Amperometric genosensor for culture independent bacterial count. Sens Actuators B Chem 299:126944–126949

  16. Chen W, Ouyang J, Yi X, Xu Y, Niu C, Zhang W, Wang L, Sheng J, Deng L, Liu Y-N, Guo S (2018) Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater 30(3):1703458–1703464

  17. Chhowalla M, Jena D, Zhang H (2016) Two-dimensional semiconductors for transistors. Nat Rev Mater 1(11):16052–16066

  18. Song G, Hao J, Liang C, Liu T, Gao M, Cheng L, Hu J, Liu Z (2016) Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform. Angew Chem Int Ed 55(6):2122–2126

    Article  CAS  Google Scholar 

  19. Gong L, Yan L, Zhou R, Xie J, Wu W, Gu Z (2017) Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy. J Mater Chem B 5(10):1873–1895

    Article  CAS  PubMed  Google Scholar 

  20. Tan C, Cao X, Wu X-J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G-H, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117(9):6225–6331

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y (2015) Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J Am Chem Soc 137(35):11376–11382

    Article  CAS  PubMed  Google Scholar 

  22. Peng J, Lai Y, Chen Y, Xu J, Sun L, Weng J (2017) Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small 13(15):1603588–1603598

  23. Liu G, Tsai H-I, Zeng X, Qi J, Luo M, Wang X, Mei L, Deng W (2019) Black phosphorus nanosheets-based stable drug delivery system via drug-self-stabilization for combined photothermal and chemo cancer therapy. ChemEngJ 375:121917–121916

  24. Favron A, Gaufres E, Fossard F, Phaneuf-L'Heureux AL, Tang NY, Levesque PL, Loiseau A, Leonelli R, Francoeur S, Martel R (2015) Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater 14(8):826–832

    Article  CAS  PubMed  Google Scholar 

  25. Ling X, Wang H, Huang S, Xia F, Dresselhaus MS (2015) The renaissance of black phosphorus. Proc Natl Acad Sci U S A 112(15):4523–4530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ryder CR, Wood JD, Wells SA, Yang Y, Jariwala D, Marks TJ, Schatz GC, Hersam MC (2016) Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat Chem 8(6):597–602

    Article  CAS  PubMed  Google Scholar 

  27. Abellán G, Lloret V, Mundloch U, Marcia M, Neiss C, Görling A, Varela M, Hauke F, Hirsch A (2016) Noncovalent functionalization of black phosphorus. Angew Chem Int Ed 55(47):14557–14562

    Article  CAS  Google Scholar 

  28. Korolkov VV, Timokhin IG, Haubrichs R, Smith EF, Yang L, Yang S, Champness NR, Schroder M, Beton PH (2017) Supramolecular networks stabilise and functionalise black phosphorus. Nat Commun 8(1):1385–1392

  29. Zeng X, Luo M, Liu G, Wang X, Tao W, Lin Y, Ji X, Nie L, Mei L (2018) Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv Sci 5(10):1800510–1800517

  30. Guo Z, Chen S, Wang Z, Yang Z, Liu F, Xu Y, Wang J, Yi Y, Zhang H, Liao L, Chu PK, Yu X-F (2017) Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv Mater 29(42):1703811–1703818

  31. Zhao Y, Wang H, Huang H, Xiao Q, Xu Y, Guo Z, Xie H, Shao J, Sun Z, Han W, Yu X-F, Li P, Chu PK (2016) Surface coordination of black phosphorus for robust air and water stability. Angew Chem Int Ed 55(16):5003–5007

    Article  CAS  Google Scholar 

  32. Chai Y, Li X, Yang M (2019) Aptamer based determination of the cancer biomarker HER2 by using phosphate-functionalized MnO2 nanosheets as the electrochemical probe. Microchim Acta 186(5):316–321

  33. Wang G, Wang H, Cao S, Xiang W, Li T, Yang M (2019) Electrochemical determination of the activity and inhibition of telomerase based on the interaction of DNA with molybdate. Microchim Acta 186(2):96–101

  34. Ouyang J, Deng L, Chen W, Sheng J, Liu Z, Wang L, Liu Y-N (2018) Two dimensional semiconductors for ultrasound-mediated cancer therapy: the case of black phosphorus nanosheets. Chem Comm 54(23):2874–2877

    Article  CAS  PubMed  Google Scholar 

  35. Zheng T, Zhang Q, Feng S, Zhu JJ, Wang Q, Wang H (2014) Robust nonenzymatic hybrid nanoelectrocatalysts for signal amplification toward ultrasensitive electrochemical cytosensing. J Am Chem Soc 136(6):2288–2291

    Article  CAS  PubMed  Google Scholar 

  36. Chen W, Ouyang J, Liu H, Chen M, Zeng K, Sheng J, Liu Z, Han Y, Wang L, Li J, Deng L, Liu YN, Guo S (2017) Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv Mater 29(5):1603864–1603870

  37. Cano I, Chapman AM, Urakawa A, van Leeuwen PW (2014) Air-stable gold nanoparticles ligated by secondary phosphine oxides for the chemoselective hydrogenation of aldehydes: crucial role of the ligand. J Am Chem Soc 136(6):2520–2528

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Hunan Provincial Science and Technology Plan Project, China (No. 2019TP1001), and Innovation-Driven Project of Central South University (2020CX002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 969 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Luo, J., Jiang, X. et al. Gold nanoparticle–modified black phosphorus nanosheets with improved stability for detection of circulating tumor cells. Microchim Acta 187, 397 (2020). https://doi.org/10.1007/s00604-020-04367-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04367-8

Keywords

Navigation