Skip to main content
Log in

Crystalline MOF nanofilm-based SALDI-MS array for determination of small molecules

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly oriented crystalline metal-organic framework (MOF) nanofilm array was prepared and used for surface-assisted laser desorption ionization mass spectrometry (SALDI-MS) for determination of small molecules. The MOF nanofilm was characterized using scanning/transmission electron microscopy, X-ray diffraction, and ultraviolet-visible spectroscopy. Different small molecules (anthracene, n-eicosanoic acid, Rhodamine B) were successfully determined by this MOF nanofilm array with limits of detection (LOD) between 0.1–5 ng·mL−1 and limits of quantification (LOQ) between 1 and 10 ng·mL−1. Compared to previously reported MOF-based SALDI-MS, this array exhibits better reproducibility (3.3–5.2%) and recovery (89–105%). The intensity of the MS peak remains the same after 25 repeated cycles. This indicates good repeatability. This MOF nanofilm-based SALDI-MS array can be used for determination of fatty acid and Rhodamine B in real samples with good recovery (83–106%).

Schematic representation of the principle of crystalline MOFs nanofilm-based SALDI-MS array

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 60:2299–2301. https://doi.org/10.1021/ac00171a028

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153. https://doi.org/10.1002/rcm.1290020802

    Article  CAS  Google Scholar 

  3. van Kampen JJ, Burgers PC, de Groot R, Gruters RA, Luider TM (2011) Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom Rev 30:101–120. https://doi.org/10.1002/mas.20268

    Article  CAS  PubMed  Google Scholar 

  4. Calligaris D, Villard C, Terras L, Braguer D, Verdier-Pinard P, Lafitte D (2010) MALDI in-source decay of high mass protein isoforms: application to α- and β-tubulin variants. Anal Chem 82:6176–6184. https://doi.org/10.1021/ac100996v

    Article  CAS  PubMed  Google Scholar 

  5. Schriemer DC, Li L (1996) Detection of high molecular weight narrow polydisperse polymers up to 1.5 million Daltons by MALDI mass spectrometry. Anal Chem 68:2721–2725. https://doi.org/10.1021/ac960442m

    Article  CAS  PubMed  Google Scholar 

  6. He H, Guo ZC, Wen YR, Xu SX, Liu Z (2019) Recent advances in nanostructure/nanomaterial-assisted laser desorption/ionization mass spectrometry of low molecular mass compounds. Anal Chim Acta 1090:1–22. https://doi.org/10.1016/j.aca.2019.08.048

    Article  CAS  PubMed  Google Scholar 

  7. Wei J, Buriak JM, Siuzdak G (1999) Desorption/ionization mass spectrometry on porous silicon. Nature 399:243–246. https://doi.org/10.1038/20400

    Article  CAS  PubMed  Google Scholar 

  8. He H, Wen YR, Guo ZC, Li PF, Liu Z (2019) Efficient mass spectrometric dissection of glycans via gold nanoparticle-assisted in-source cation adduction dissociation. Anal Chem 91:8390–8397. https://doi.org/10.1021/acs.analchem.9b01217

    Article  CAS  PubMed  Google Scholar 

  9. Chen CT, Chen YC (2005) Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 77:5912–5919. https://doi.org/10.1021/ac050831t

    Article  CAS  PubMed  Google Scholar 

  10. Chiang CK, Chen WT, Chang HT (2011) Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev 40:1269–1281. https://doi.org/10.1039/C0CS00050G

    Article  CAS  PubMed  Google Scholar 

  11. Zhao YF, Xie HY, Zhao M, Li HJ, Chen XF, Cai ZW, Song HX (2019) Core-shell hollow spheres of type C@MoS2 for use in surface-assisted laser desorption/ionization time of flight mass spectrometry of small molecules. Microchim Acta 186:830. https://doi.org/10.1007/s00604-019-3960-1

    Article  CAS  Google Scholar 

  12. Min QH, Zhang XX, Chen XQ, Li SY, Zhu JJ (2014) N-doped graphene: an alternative carbon-based matrix for highly efficient detection of small molecules by negative ion MALDI-TOF MS. Anal Chem 86:9122–9130. https://doi.org/10.1021/ac501943n

    Article  CAS  PubMed  Google Scholar 

  13. Shi CY, Meng JR, Deng CH (2012) Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chem Commun 48:2418–2420. https://doi.org/10.1039/C2CC17696C

    Article  CAS  Google Scholar 

  14. Wang XY, Dou SZ, Wang ZS, Du J, Lu N (2020) Carbon nanoparticles derived from carbon soot as a matrix for SALDI-MS analysis. Microchim Acta 186:691. https://doi.org/10.1007/s00604-020-4142-x

    Article  CAS  Google Scholar 

  15. Shi CY, Deng CH (2016) Recent advances in inorganic materials for LDI-MS analysis of small molecules. Analyst 141:2816–2826. https://doi.org/10.1039/C6AN00220J

    Article  CAS  PubMed  Google Scholar 

  16. Zhen DS, Jiang N, Geng HC, Qiao Y, Liu Y, Zhu XQ, Gao C, Grimes GA, Cai QY (2019) Cobalt-doped nanoporous carbon as SALDI-TOF-MS adsorbent and matrix for quantification of cetyltrimethylammonium bromide, Rhodamine B and malachite green at sub-ppt levels. Microchim Acta 186:691. https://doi.org/10.1007/s00604-019-3816-8

    Article  CAS  Google Scholar 

  17. Go EP, Apon JV, Luo GH, Saghatelian A, Daniels RH, Sahi V, Dubrow R, Cravatt BF, Vertes A, Siuzdak G (2005) Desorption/ionization on silicon nanowires. Anal Chem 77:1641–1646. https://doi.org/10.1021/ac048460o

    Article  CAS  PubMed  Google Scholar 

  18. Chen XM, Wang T, Lin LM, Wo FJ, Liu YQ, Liang X, Ye H, Wu JM (2018) Tip-enhanced photoinduced electron transfer and ionization on vertical silicon nanowires. ACS Appl Mater Interfaces 10:14389–14398. https://doi.org/10.1021/acsami.8b00506

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Tan J, Yu JK, Feng JD, Pan AW, Zheng S, Wu JM (2014) Use of a porous silicon–gold plasmonic nanostructure to enhance serum peptide signals in MALDI-TOF analysis. Anal Chim Acta 849:27–35. https://doi.org/10.1016/j.aca.2014.08.028

    Article  CAS  PubMed  Google Scholar 

  20. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472. https://doi.org/10.1126/science.1067208

    Article  CAS  PubMed  Google Scholar 

  21. Abdelhamid HN (2018) Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim Acta 185:200. https://doi.org/10.1007/s00604-018-2687-8

    Article  CAS  Google Scholar 

  22. Lin ZA, Cai ZW (2018) Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules by using nanostructured substrate as matrices. Mass Spectrom Rev 37:681–696. https://doi.org/10.1002/mas.21558

    Article  CAS  PubMed  Google Scholar 

  23. Fu CW, Lirio S, Shih YH, Liu WL, Lin CH, Huang HY (2018) The cooperativity of Fe3O4 and metal-organic framework as multifunctional nanocomposites for laser desorption ionization process. Chem Eur J 24:9598–9605. https://doi.org/10.1002/chem.201800994

    Article  CAS  PubMed  Google Scholar 

  24. Chang YJ, Yang SS, Yu XZ, Zhang H, Shang WB, Gu ZY (2018) Ultrahigh efficient laser desorption ionization of saccharides by Ti-based metal-organic frameworks nanosheets. Anal Chim Acta 1023:91–98. https://doi.org/10.1016/j.aca.2018.06.035

    Article  CAS  Google Scholar 

  25. Lin ZA, Bian W, Zheng JN, Cai ZW (2015) Magnetic metal-organic framework nanocomposites for enrichment and direct detection of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Chem Commun 51:8785–8788. https://doi.org/10.1039/C5CC02495A

    Article  CAS  Google Scholar 

  26. Lin ZA, Zheng JN, Lin G, Tang Z, Yang XQ, Cai ZW (2015) Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules using graphitic carbon nitride nanosheet matrix. Anal Chem 87:8005–8012. https://doi.org/10.1021/acs.analchem.5b02066

    Article  CAS  PubMed  Google Scholar 

  27. Shih YH, Chien CH, Singco B, Hsu CL, Lin CH, Huang HY (2013) Metal–organic frameworks: new matrices for surface-assisted laser desorption–ionization mass spectrometry. Chem Commun 49:4929–4931. https://doi.org/10.1039/C3CC40934A

    Article  CAS  Google Scholar 

  28. Fu CP, Lirio S, Liu WL, Lin CH, Huang HY (2015) A novel type of matrix for surface-assisted laser desorption–ionization mass spectrometric detection of biomolecules using metal-organic frameworks. Anal Chim Acta 888:103–109. https://doi.org/10.1016/j.aca.2015.07.029

    Article  CAS  PubMed  Google Scholar 

  29. Bie ZJ, Huang AL, Zhang YN, Chen Y (2019) Boronate affinity metal-organic frameworks for highly efficient cis-diol molecules in-situ enrichment and surface-assisted laser desorption/ionization mass spectrometric detection. Anal Chim Acta 1065:40–48. https://doi.org/10.1016/j.aca.2019.03.034

    Article  CAS  PubMed  Google Scholar 

  30. Chen LF, Ou JJ, Wang HW, Liu ZS, Ye ML, Zou HF (2016) Tailor-made stable Zr (IV)-based metal-organic frameworks for laser desorption/ionization mass spectrometry analysis of small molecules and simultaneous enrichment of phosphopeptides. ACS Appl Mater Interfaces 8:20292–20300. https://doi.org/10.1021/acsami.6b06225

    Article  CAS  PubMed  Google Scholar 

  31. Ma W, Xu ST, Ai WP, Lin C, Bai Y, Liu HW (2019) A flexible and multifunctional metal–organic framework as a matrix for analysis of small molecules using laser desorption/ionization mass spectrometry. Chem Commun 55:6898–6901. https://doi.org/10.1039/c9cc02611h

    Article  CAS  Google Scholar 

  32. Li YZ, Fu ZH, Xu G (2019) Metal-organic framework nanosheets: preparation and applications. Coord Chem Rev 388:79–106. https://doi.org/10.1016/j.ccr.2019.02.033

    Article  CAS  Google Scholar 

  33. Liu JX, Wöll C (2017) Surface-supported metal–organic framework thin films: fabrication methods, applications and challenges. Chem Soc Rev 46:5730–5770. https://doi.org/10.1039/C7CS00315C

    Article  CAS  PubMed  Google Scholar 

  34. Niu HY, Wang SH, Tan YX, Song XW, Cai YQ (2016) Simultaneous and direct analysis of multiple types of organic contaminants in water based on a MOF decorated with a suitable quantity of au nanoparticles using SALDI-TOF MS. RSC Adv 102:99919–99923. https://doi.org/10.1039/C6RA19635G

    Article  CAS  Google Scholar 

  35. Chen GS, Fang XA, Chen Q, Zhang JG, Zhong ZS, Xu JQ, Zhu F, Ouyang GF (2017) Boronic acid decorated defective metal–organic framework nanoreactors for high-effciency carbohydrates separation and labeling. Adv Funct Mater 27:201702126. https://doi.org/10.1002/adfm.201702126

    Article  CAS  Google Scholar 

  36. Shekhah O, Liu J, Fischer RA, Wöll C (2011) MOF thin films: existing and future applications. Chem Soc Rev 40:1081–1106. https://doi.org/10.1039/C0CS00147C

    Article  CAS  PubMed  Google Scholar 

  37. Xu G, Yamada T, Otsubo K, Sakaida S, Kitagawa H (2012) Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J Am Chem Soc 134:16524–16527. https://doi.org/10.1021/ja307953m

    Article  CAS  PubMed  Google Scholar 

  38. Xu G, Otsubo K, Yamada T, Sakaida S, Kitagawa H (2013) Superprotonic conductivity in a highly oriented crystalline metal–organic framework nanofilm. J Am Chem Soc 135:7438–7441. https://doi.org/10.1021/ja402727d

    Article  CAS  PubMed  Google Scholar 

  39. Lu MH, Lai YQ, Chen GN, Cai ZW (2011) Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal Chem 833:161–3169. https://doi.org/10.1021/ac2002559

    Article  CAS  Google Scholar 

  40. Wang SH, Niu HY, Zeng T, Zhang XL, Cao D, Cai YQ (2017) Rapid determination of small molecule pollutants using metal-organic frameworks as adsorbent and matrix of MALDI-TOF-MS. Microporous Mesoporous Mater 239:390–395. https://doi.org/10.1016/j.micromeso.2016.10.032

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the financial support of the grants from the National Natural Science Foundation of China (21804003, 21904005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijun Bie.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2089 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Huang, A., Zhang, L. et al. Crystalline MOF nanofilm-based SALDI-MS array for determination of small molecules. Microchim Acta 187, 326 (2020). https://doi.org/10.1007/s00604-020-04310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04310-x

Keywords

Navigation