Skip to main content

Reversible chelating polymer for determination of heavy metals by dispersive micro solid-phase extraction with ICP-MS

Abstract

N-functionalization of pyrrole with carbon disulfide and subsequent chemical polymerization resulted in the development of a new sorbent material for the extraction of metals. The synthesized polymer, poly(pyrrole-N-carbodithioic acid) (PPy-CS2), is an air-stable, granular powder that is insoluble in water. PPy-CS2 combines pH-dependent chelation, extraction, and desorption sorbent properties that are exploited for the selective extraction and sensitive determination of heavy metals in water matrices using ultrasound-assisted dispersive micro solid-phase extraction and inductively coupled plasma mass spectrometry. Excellent removal and recovery of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), and Zn(II) were achieved and compared with unfunctionalized polypyrrole, which demonstrated extraction resulted from chelation of the metal ions. The extraction efficiency of the PPy-CS2 sorbent as a function of pH, amount of sorbent, extraction time, and flow rate of the desorption solution were evaluated. Limits of detection ranged from 0.3 for cadmium to 11.2 ng/L for zinc with linear dynamic ranges from 0.1 to 500 μg/L and relative standard deviations from 2.2 to 6.3%. The sample preparation method was successfully applied for determination of the target metals in raw well water, treated well water, and river water. Validation was performed by analysis of a certified reference standard for trace metals in drinking water.

Schematic representation of the ultrasound-assisted micro solid-phase extraction protocol for the removal and recovery of heavy metals by the air-stable, granular, and reversible chelating polymer, poly (pyrrole-N-carbodithioic acid).

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ma Y, Egodawatta P, McGree J, Liu A, Goonetilleke A (2016) Human health risk assessment of heavy metals in urban stormwater. Sci Total Environ 557-558:764–772. https://doi.org/10.1016/j.scitotenv.2016.03.067

    Article  PubMed  CAS  Google Scholar 

  2. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112(10):5073–5091. https://doi.org/10.1021/cr300133d

    Article  PubMed  CAS  Google Scholar 

  3. Shyam Sunder GS, Adhikari S, Rohanifar A, Poudel A, Kirchhoff JR (2020) Evolution of environmentally friendly strategies for metal extraction. Separations 7(1):4. https://doi.org/10.3390/separations7010004

    Article  Google Scholar 

  4. Chauhan G, Pant KK, Nigam KD (2015) Chelation technology: a promising green approach for resource management and waste minimization. Environ Sci Process Impacts 17(1):12–40. https://doi.org/10.1039/C4EM00559G

    Article  PubMed  CAS  Google Scholar 

  5. Kanchi S, Singh P, Bisetty K (2014) Dithiocarbamates as hazardous remediation agent: a critical review on progress in environmental chemistry for inorganic species studies of 20th century. Arab J Chem 7(1):11–25. https://doi.org/10.1016/j.arabjc.2013.04.026

    Article  CAS  Google Scholar 

  6. Hashemi B, Rezania S (2019) Carbon-based sorbents and their nanocomposites for the enrichment of heavy metal ions: a review. Microchim Acta 186(8):578. https://doi.org/10.1007/s00604-019-3668-2

    Article  CAS  Google Scholar 

  7. Sitko R, Janik P, Zawisza B, Talik E, Margui E, Queralt I (2015) Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Anal Chem 87(6):3535–3542. https://doi.org/10.1021/acs.analchem.5b00283

    Article  PubMed  CAS  Google Scholar 

  8. Liu Y, Qian P, Yu Y, Xiao L, Wang Y, Ye S, Chen Y (2017) Dithiocarbamate functionalized Al(OH)3-polyacrylamide adsorbent for rapid and efficient removal of Cu(II) and Pb(II). J Appl Polym Sci 134(46):45431. https://doi.org/10.1002/app.45431

    Article  CAS  Google Scholar 

  9. Barfi B, Asghari A, Rajabi M (2020) Toward use of a nano layered double hydroxide/ammonium pyrrolidine dithiocarbamate in speciation analysis: one-step dispersive solid-phase extraction of chromium species in human biological samples. Arab J Chem 13(1):568–579. https://doi.org/10.1016/j.arabjc.2017.06.002

    Article  CAS  Google Scholar 

  10. Tavares DS, Lopes CB, Daniel-da-Silva AL, Duarte AC, Trindade T, Pereira E (2014) The role of operational parameters on the uptake of mercury by dithiocarbamate functionalized particles. Chem Eng J 254:559–570. https://doi.org/10.1016/j.cej.2014.06.008

    Article  CAS  Google Scholar 

  11. Bagheri H, Ayazi Z, Naderi M (2013) Conductive polymer-based microextraction methods: a review. Anal Chim Acta 767:1–13. https://doi.org/10.1016/j.aca.2012.12.013

    Article  PubMed  CAS  Google Scholar 

  12. Hasani T, Eisazadeh H (2013) Removal of Cd (II) by using polypyrrole and its nanocomposites. Synth Met 175:15–20. https://doi.org/10.1016/j.synthmet.2013.04.026

    Article  CAS  Google Scholar 

  13. Li S, Lu X, Li X, Xue Y, Zhang C, Lei J, Wang C (2012) Preparation of bamboo-like PPy nanotubes and their application for removal of Cr(VI) ions in aqueous solution. J Colloid Interface Sci 378(1):30–35. https://doi.org/10.1016/j.jcis.2012.03.065

    Article  PubMed  CAS  Google Scholar 

  14. Chandra V, Kim KS (2011) Highly selective adsorption of Hg2+ by a polypyrrole–reduced graphene oxide composite. Chem Commun 47(13):3942–3944. https://doi.org/10.1039/C1CC00005E

    Article  CAS  Google Scholar 

  15. Choi M, Jang J (2008) Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon. J Colloid Interface Sci 325(1):287–289. https://doi.org/10.1016/j.jcis.2008.05.047

    Article  PubMed  CAS  Google Scholar 

  16. Aigbe UO, Das R, Ho WH, Srinivasu V, Maity A (2018) A novel method for removal of Cr(VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields. Sep Purif Technol 194:377–387. https://doi.org/10.1016/j.seppur.2017.11.057

    Article  CAS  Google Scholar 

  17. Sahmetlioglu E, Yilmaz E, Aktas E, Soylak M (2014) Polypyrrole/multi-walled carbon nanotube composite for the solid phase extraction of lead(II) in water samples. Talanta 119:447–451. https://doi.org/10.1016/j.talanta.2013.11.044

    Article  PubMed  CAS  Google Scholar 

  18. Lim CW, Song K, Kim SH (2012) Synthesis of PPy/silica nanocomposites with cratered surfaces and their application in heavy metal extraction. J Ind Eng Chem 18(1):24–28. https://doi.org/10.1016/j.jiec.2011.11.115

    Article  CAS  Google Scholar 

  19. Srivastava V, Maydannik P, Sharma YC, Sillanpää M (2015) Synthesis and application of polypyrrole coated tenorite nanoparticles (PPy@TN) for the removal of the anionic food dye ‘tartrazine’ and divalent metallic ions viz. Pb(II), Cd(II), Zn(II), Co(II), Mn(II) from synthetic wastewater. RSC Adv 5(98):80829–80843. https://doi.org/10.1039/C5RA14108G

    Article  CAS  Google Scholar 

  20. Shin K-Y, Hong J-Y, Jang J (2011) Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: isotherms and kinetic study. J Hazard Mater 190(1):36–44. https://doi.org/10.1016/j.jhazmat.2010.12.102

    Article  PubMed  CAS  Google Scholar 

  21. Young JA, Zhang C, Devasurendra AM, Tillekeratne LMV, Anderson JL, Kirchhoff JR (2016) Conductive polymeric ionic liquids for electroanalysis and solid-phase microextraction. Anal Chim Acta 910:45–52. https://doi.org/10.1016/j.aca.2016.01.017

    Article  PubMed  CAS  Google Scholar 

  22. Devasurendra AM, Zhang C, Young JA, Tillekeratne LMV, Anderson JL, Kirchhoff JR (2017) Electropolymerized pyrrole-based conductive polymeric ionic liquids and their application for solid-phase microextraction. ACS Appl Mater Interfaces 9(29):24955–24963. https://doi.org/10.1021/acsami.7b05793

    Article  PubMed  CAS  Google Scholar 

  23. Devasurendra AM, Palagama DSW, Rohanifar A, Isailovic D, Kirchhoff JR, Anderson JL (2018) Solid-phase extraction, quantification, and selective determination of microcystins in water with a gold-polypyrrole nanocomposite sorbent material. J Chromatogr A 1560:1–9. https://doi.org/10.1016/j.chroma.2018.04.027

    Article  PubMed  CAS  Google Scholar 

  24. Rohanifar A, Rodriguez LB, Devasurendra AM, Alipourasiabi N, Anderson JL, Kirchhoff JR (2018) Solid-phase microextraction of heavy metals in natural water with a polypyrrole/carbon nanotube/1, 10–phenanthroline composite sorbent material. Talanta 188:570–577. https://doi.org/10.1016/j.talanta.2018.05.100

    Article  PubMed  CAS  Google Scholar 

  25. Ramesh A, Rama Mohan K, Seshaiah K (2002) Preconcentration of trace metals on Amberlite XAD-4 resin coated with dithiocarbamates and determination by inductively coupled plasma-atomic emission spectrometry in saline matrices. Talanta 57(2):243–252. https://doi.org/10.1016/S0039-9140(02)00033-4

    Article  PubMed  CAS  Google Scholar 

  26. O'Riordan DMT, Wallace GG (1986) Poly(pyrrole-N-carbodithioate) electrode for electroanalysis. Anal Chem 58(1):128–131. https://doi.org/10.1021/ac00292a031

    Article  CAS  Google Scholar 

  27. Andrew FP, Ajibade PA (2018) Metal complexes of alkyl-aryl dithiocarbamates: structural studies, anticancer potentials and applications as precursors for semiconductor nanocrystals. J Mol Struct 1155:843–855. https://doi.org/10.1016/j.molstruc.2017.10.106

    Article  CAS  Google Scholar 

  28. Chougule M, Pawar S, Godse P, Mulik R, Sen S, Patil V (2011) Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 1(1):6–10. https://doi.org/10.4236/snl.2011.11002

    Article  CAS  Google Scholar 

  29. Feist B, Sitko R (2019) Fast and sensitive determination of heavy metal ions as bathophenanthroline chelates in food and water samples after dispersive micro-solid phase extraction using graphene oxide as sorbent. Microchem J 147:30–36. https://doi.org/10.1016/j.microc.2019.03.013

  30. Smirnova SV, Samarina TO, Ilin DV, Pletnev IV (2018) Multielement determination of trace heavy metals in water by microwave-induced plasma atomic emission spectrometry after extraction in unconventional single-salt aqueous biphasic system. Anal Chem 90(10):6323–6331. https://doi.org/10.1021/acs.analchem.8b01136

    Article  PubMed  CAS  Google Scholar 

  31. Yamini Y, Safari M (2018) Modified magnetic nanoparticles with catechol as a selective sorbent for magnetic solid phase extraction of ultra-trace amounts of heavy metals in water and fruit samples followed by flow injection ICP-OES. Microchem J 143:503–511. https://doi.org/10.1016/j.microc.2018.08.018

    Article  CAS  Google Scholar 

  32. Yang B, Gong Q, Zhao L, Sun H, Ren N, Qin J, Xu J, Yang H (2011) Preconcentration and determination of lead and cadmium in water samples with a MnO2 coated carbon nanotubes by using ETAAS. Desalination 278(1):65–69. https://doi.org/10.1016/j.desal.2011.05.010

    Article  CAS  Google Scholar 

  33. Su S, Chen B, He M, Hu B (2014) Graphene oxide–silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples. Talanta 123:1–9. https://doi.org/10.1016/j.talanta.2014.01.061

    Article  PubMed  CAS  Google Scholar 

  34. Ghazaghi M, Shirkhanloo H, Mousavi HZ, Rashidi AM (2015) Ultrasound-assisted dispersive solid phase extraction of cadmium(II) and lead(II) using a hybrid nanoadsorbent composed of graphene and the zeolite clinoptilolite. Microchim Acta 182(7):1263–1272. https://doi.org/10.1007/s00604-015-1446-3

    Article  CAS  Google Scholar 

  35. Sun J, Liang Q, Han Q, Zhang X, Ding M (2015) One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples. Talanta 132:557–563. https://doi.org/10.1016/j.talanta.2014.09.043

    Article  PubMed  CAS  Google Scholar 

  36. Sahraeian T, Sereshti H, Rohanifar A (2018) Simultaneous determination of bismuth, lead, and iron in water samples by optimization of USAEME and ICP-OES via experimental design. J Anal Test 2(1):98–105. https://doi.org/10.1007/s41664-017-0046-0

    Article  Google Scholar 

Download references

Acknowledgments

This manuscript is dedicated to our colleague and teacher, Professor Dean M. Giolando. Professor Donald Ronning is also acknowledged for providing raw and treated well water samples.

Funding

JRK would like to thank the National Science Foundation (NSF) for funding to purchase a scanning electron microscope (CHE–0840474) and renovation of Bowman-Oddy Laboratory to create the Center for Biosphere Restoration and Research (ARI–0963345). JRK also would like to acknowledge funding from the University of Toledo Research and Fellowship Program and the University of Toledo Center for Materials and Sensor Characterization for conducting ICP-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon R. Kirchhoff.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.36 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rohanifar, A., Alipourasiabi, N., Shyam Sunder, G.S. et al. Reversible chelating polymer for determination of heavy metals by dispersive micro solid-phase extraction with ICP-MS. Microchim Acta 187, 339 (2020). https://doi.org/10.1007/s00604-020-04308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04308-5

Keywords

  • Dispersive solid-phase extraction
  • Sample preparation
  • Heavy metal determination
  • Inductively coupled plasma mass spectrometry
  • Water analysis