Skip to main content
Log in

A balsam pear-shaped CuO SERS substrate with highly chemical enhancement for pesticide residue detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Simple and traditional hydrothermal fabrication of a novel balsam pear-shaped CuO with high SERS enhancement is presented. XRD (X-ray diffraction), SEM (scanning electronic microscopy), TEM (transmission electron microscope), HRTEM (high-resolution transmission electron microscope), UV-Vis, and Raman are adopted to ensure that this balsam pear-shaped CuO with dense nanoparticle protuberance is successfully prepared. The LOD of this CuO SERS substrate is 4.79 μg L−1 with R6G as molecular probe. By using DFT (density functional theory) calculation and FDTD (finite difference time domainmethod) simulation, both EM (electromagnetic enhancement) and CM (chemical enhancement) mechanisms are investigated, and the results show that these two-enhancement mechanisms can coexist in this balsam pear-shaped CuO. Finally, the prepared substrate has been applied for the determination of trace levels of paraquat in solution , and results show that its LOD for paraquat is 275 μg L−1 (optimum Raman band: 1646 cm−1 Raman shift), which is better than the government standard in China. A dexterous and facile way for fabrication of CuO SERS-active substrates with low cost and high performance, quite promising in detection of chemically hazardous substances and pesticide residue is provided.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han XX, Jia HY, Wang YF, Lu ZC, Wang CX, Xu WQ, Bing Z, Ozaki Y, Chem AJ (2008) Analytical technique for label-free multi-protein detection-based on Western blot and surface-enhanced Raman scattering. Anal Chem 80(8):2799

    Article  CAS  PubMed  Google Scholar 

  2. Sablinskas V (2014) Application of SERS spectroscopy for detection of trace components in urinary deposits. In: Plasmonics in Biology & Medicine XI

  3. Wu Y-x, Liang P, Dong Q-m, Bai Y, Yu Z, Huang J, Zhong Y, Dai Y-C, Ni D, Shu H-b, Pittman CU Jr (2017) Design of a silver nanoparticle for sensitive surface enhanced Raman spectroscopy detection of carmine dye. Food Chem 237:974–980. https://doi.org/10.1016/j.foodchem.2017.06.057

    Article  PubMed  CAS  Google Scholar 

  4. Zheng H, Ni D, Yu Z, Liang P, Chen H (2016) Fabrication of flower-like silver nanostructures for rapid detection of caffeine using surface enhanced Raman spectroscopy. Sensors Actuators B Chem 231:423–430. https://doi.org/10.1016/j.snb.2016.03.045

    Article  CAS  Google Scholar 

  5. Chen B, Meng G, Zhou F, Huang Q, Zhu C, Hu X, Kong MJ (2014) Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs. Nanotechnology 25(14):145605

    Article  CAS  PubMed  Google Scholar 

  6. Kowalska AA, Kaminska A, Adamkiewicz W, Witkowska E, Tkacz M (2015) Novel highly sensitive Cu-based SERS platforms for biosensing applications. J Raman Spectrosc 46(5):428–433

    Article  CAS  Google Scholar 

  7. Wang W, Li Z, Gu B, Zhang Z, Xu HJAN (2009) Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering. ACS Nano 3(11):3493–3496

    Article  CAS  PubMed  Google Scholar 

  8. Turner MD, Muntasir Hossain M, Gu MJ (2010) The effects of retardation on plasmon hybridization within metallic nanostructures. New J Phys 12(8):083062

    Article  CAS  Google Scholar 

  9. Liu Y, Xu C, Lu J, Zhu Z, Zhu Q, Manohari AG, Shi ZJASS (2018) Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates. Appl Surf Sci 427:830–836

  10. Chen Y, Liu L (2014) Low-cost, high-sensitivity SERS nano-bio-chip for kinase profiling, drug monitoring and environmental detection: a translational platform technology. Plasmonics in Biology and Medicine XI: International Society for Optics and Photonics, vol. 8957, 895702

  11. Yang H, Hailong HU, Zhenhua NI, Poh CK, Cong C, Lin J, Ting YU (2013) Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces. Carbon 62(5):422–429

    Article  CAS  Google Scholar 

  12. Park WH, Kim ZHJ (2010) Charge transfer enhancement in the SERS of a single molecule. Nano Lett 10(10):4040–4048

    Article  CAS  PubMed  Google Scholar 

  13. Oevering H, Verhoeven JW, Paddon-Row MN, Warman JMJC (1989) Abstract: charge-transfer absorption and emission resulting from long-range through-bond interaction: exploring the relation between electronic coupling and electron-transfer in bridged donor-acceptor systems. Tetrahedron 45(15):4751–4766

    Article  CAS  Google Scholar 

  14. Xia L, Chen M, Zhao X, Zhang Z, Xia J, Xu H, Sun MJ (2014) Visualized method of chemical enhancement mechanism on SERS and TERS. J Raman Spectrosc 45(7):533

    Article  CAS  Google Scholar 

  15. Li X, Choy WCH, Ren X, Zhang D, Lu HJ (2014) Highly intensified surface enhanced raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system. Adv Funt Mater 24(21):3114–3122

    Article  CAS  Google Scholar 

  16. Lin J, Hao W, Shang Y, Wang X, Qiu D, Ma G, Chen C, Li S, Guo LJ (2018) Direct experimental observation of facet-dependent SERS of Cu2 O polyhedra. Small 14(8):1703274

    Article  CAS  Google Scholar 

  17. Wang Y, Ruan W, Zhang J, Bai Y, Xu W, Bing Z, Lombardi JR (2010) Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals. J Raman Spectrosc 40(8):1072–1077

    Article  CAS  Google Scholar 

  18. Yang L, Jiang X, Ruan W, Yang J, Zhao B, Xu W, Lombardi JR (2009) Charge-transfer-induced surface-enhanced Raman scattering on Ag−TiO2 nanocomposites. J Phys Chem C 113(36):16226–16231. https://doi.org/10.1021/jp903600r

    Article  CAS  Google Scholar 

  19. Fu X, Bei F, Wang X, Yang X, Lu L (2009) Two-dimensional monolayers of single-crystalline α-Fe2O3 nanospheres: preparation, characterization and SERS effect. Mater Lett 63(2):185–187

    Article  CAS  Google Scholar 

  20. Lim LK, Ng BK, Fu CY, Tobing LYM, Zhang DH (2017) Highly sensitive and scalable AAO-based nano-fibre SERS substrate for sensing application. Nanotechnology 28(23):235302

    Article  CAS  PubMed  Google Scholar 

  21. Cao Y, Liang P, Dong Q, Wang D, Yu Z (2019) A facile reduction method synthesis of defective MoO2-x nanospheres used for SERS detection with highly chemical enhancement. Anal Chem 91:8683–8690

    Article  CAS  PubMed  Google Scholar 

  22. Dwight DW, Allara DL (2008) Surface enhanced raman spectroscopy (SERS) substrates exhibiting uniform high enhancement and stability, US 7450227 B2, Google Patents

  23. Bontempi N, Vassalini I, Alessandri I (2018) All-dielectric core/shell resonators: From plasmon-free SERS to multimodal analysis. J Raman Spectrosc 49(6):943–953

  24. Chen L, Sun H, Zhao Y, Zhang Y, Wang Y, Liu Y, Zhang X, Jiang Y, Hua Z, Yang J (2017) Plasmonic-induced SERS enhancement of shell-dependent Ag@Cu2O core–shell nanoparticles. RSC Adv 7(27):16553–16560. https://doi.org/10.1039/c7ra01187c

    Article  CAS  Google Scholar 

  25. Cao Y, Liang P, Dong Q, Wang D, Zhang D, Tang L, Wang L, Jin S, Ni D, Yu Z (2019) Facile reduction method synthesis of defective MoO2–x nanospheres used for SERS detection with high chemical enhancement. Anal Chem 91(13):8683–8690. https://doi.org/10.1021/acs.analchem.9b02394

    Article  PubMed  CAS  Google Scholar 

  26. Lin J, Shang Y, Li X, Yu J, Wang X, Guo L (2017) Ultrasensitive SERS detection by defect engineering on single Cu2 O superstructure particle. Adv Mater 29(5). https://doi.org/10.1002/adma.201604797

  27. Kumari N, Ghosh A, Bhattacharjee A (2014) Investigation of structural and electrical properties of CuO modified SnO 2 nanoparticles. Mater Sci Semicond Process 19(1):114–123

    Article  CAS  Google Scholar 

  28. Smith SM, Rawat S, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC (2011) Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. Biochemistry 50(47):10231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Espinos JP, Morales J, Barranco A, Caballero A, Holgado JP, Gonzalezelipe ARJ (2002) Interface effects for cu, CuO, and cu 2 O deposited on SiO 2 and ZrO 2. XPS determination of the valence state of copper in Cu/SiO 2 and Cu/ZrO 2 catalysts. J Phys Chem B 106(27):6921–6929

    Article  CAS  Google Scholar 

  30. (!!! INVALID CITATION !!! [30,31])

  31. Martinez-Nunez CE, Delgado-Beleno Y, Cortez-Valadez M, Flores-Lopez NS, Flores-Acosta M, Castillon-Barraza FF (2018) Non-resonant enhancement mechanism in SERS effect due to copper oxide quantum dots stabilized in synthetic zeolite F9-NaX. Mater Chem Phys 211:150–159. https://doi.org/10.1016/j.matchemphys.2017.12.075

    Article  CAS  Google Scholar 

  32. El-Trass A, ElShamy H, El-Mehasseb I, El-Kemary M (2012) CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl Surf Sci 258(7):2997–3001. https://doi.org/10.1016/j.apsusc.2011.11.025

    Article  CAS  Google Scholar 

  33. (!!! INVALID CITATION !!! [34–37])

  34. Zhang C, Jiang SZ, Huo YY, Liu AH, Xu SC, Liu XY, Sun ZC, Xu YY, Li Z, Man BY (2015) SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure. Opt Express 23(19):24811

    Article  CAS  PubMed  Google Scholar 

  35. Yang C, Liang P, Tang L, Zhou Y, Cao Y, Wu Y, Zhang D, Dong Q, Huang J, He P (2018) Synergistic effects of semiconductor substrate and noble metal nano-particles on SERS effect both theoretical and experimental aspects. Appl Surf Sci 436:367–372. https://doi.org/10.1016/j.apsusc.2017.12.074

    Article  CAS  Google Scholar 

  36. Quint MT, Delgado S, Paredes JH, Hirst LS, Ghosh S (2015) Optical switching of nematic liquid crystal film arising from induced electric field of localized surface plasmon resonance. In: Spie Optics+photonics

  37. You JW, Panoiu NC (2019) "Analysis of the Interaction Between Classical and Quantum Plasmons via FDTD–TDDFT Method," in IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 4, pp. 111-118, doi: https://doi.org/10.1109/JMMCT.2019.2906585

  38. Zhu M, Wei S, Xue X, Wei J, Li Z, Lei C, Mao H, Lv H, Xu W, Lombardi JR (2012) Interfacial charge-transfer effects in semiconductor–molecule–metal structures: influence of contact variation. J Phys Chem C 116(27):14701–14710

    Article  CAS  Google Scholar 

  39. Liu H, Xu B, Liu JM, Yin J, Miao F, Duan CG, Wan XG (2016) Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS2. Phys Chem Chem Phys 18(21):14222–14227

    Article  CAS  PubMed  Google Scholar 

  40. Luo H, Wang X, Huan Y, Lai K, Rasco BA, Fan YJ (2018) Rapid and sensitive surface-enhanced Raman spectroscopy (SERS) method combined with gold nanoparticles for determination of paraquat in apple juice. J Sci Food Agric 98:3892–3898

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

My gratitude also goes to Dr. Liang for his support of National Demonstration Base for Micro/Nano-Fabrication and Optoelectronic Detection and International Science and Technology Cooperation, as well as to Miss Zhu Wanying for her careful revision of my paper.

Funding

This paper is financially supported by Development and application of multi-parameter and non-destructive testing instrument for cross-border goods, under National Key R&D Program of China (No. 2017YFF0108900). This project is also financially supported by Fundamental Research Funds for the Central Universities(Program No.2662017JC035), Preeminence Youth Science Funds of Zhejiang Province (No.LR19F050001), National Science Foundation for Young Scholars of China (Grant No.31000316), Application Research Program of Commonweal Technology of Zhejiang Province (No. 2014C37042), Zhejiang province university students in scientific and technological innovation activities (No. 2016R409011), Science and technology project of Zhejiang Province (No. 2016C33026), and National Key Research and Development Program project (No. 2017YFD040800).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript is written with contributions from all authors who have given their approval to its final version.

Corresponding authors

Correspondence to Pei Liang or Qianmin Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, P., Cao, Y., Dong, Q. et al. A balsam pear-shaped CuO SERS substrate with highly chemical enhancement for pesticide residue detection. Microchim Acta 187, 335 (2020). https://doi.org/10.1007/s00604-020-04303-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04303-w

Keywords

Navigation