Skip to main content

Immunoassay-type biosensor based on magnetic nanoparticle capture and the fluorescence signal formed by horseradish peroxidase catalysis for tumor-related exosome determination

Abstract

A sandwich-type fluorescent biosensor for the determination of tumor-related exosome was designed. It is based on magnetic nanoparticle (MNP) capture and horseradish peroxidase (HRP) catalysis. MNPs were used as the substrate to capture exosomes by modifying the CD63 antibody on MNPs surface. After that, the biotinylated epithelial cell adhesion molecule (EpCAM) antibody was used to capture the tumor-related exosomes, which specifically express EpCAM. A novel method for the fluorescence measurement of tumor-associated exosome was achieved, with a detection limit as low as 200 (± 9) particles mL−1. The analytical range of this method is from 576 (± 15) particles mL−1 to 5.76 × 107 (± 5.1 × 105) particles mL−1. For the fluorescence measurement, the excitation wavelength was set to 320 nm. Fluorescent spectra were collected at emission wavelength in the range 370 to 550 nm; the data shown in the calibration plot were studied by using the fluorescence intensity at 406 nm. This sensor was also able to successfully detect the exosomes from the plasma of patients with hepatocellular carcinoma (HCC) and healthy humans.

Schematic representation of the sensing process of immunoassay-type biosensor based on magnetic nanoparticle capture and the fluorescence signal formed by the horseradish peroxidase (HRP) catalysis for tumor-related exosome determination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5

References

  1. 1.

    Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, Anagnostou V, Fiksel J, Cristiano S, Papp E (2017) Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 9:2415–2427

    Article  Google Scholar 

  2. 2.

    Perez-Callejo D, Romero A, Provencio M, Torrente M (2016) Liquid biopsy based biomarkers in non-small cell lung cancer for diagnosis and treatment monitoring. Transl Lung Cancer Res 5:455–465

    CAS  Article  Google Scholar 

  3. 3.

    Wardle J, Robb K, Vernon S, Waller J (2015) Screening for prevention and early diagnosis of cancer. Am Psychol 70:119–133

    Article  Google Scholar 

  4. 4.

    Mathai RA, Vidya R, Reddy BS, Thomas L, Udupa K, Kolesar J, Rao M (2019) Potential utility of liquid biopsy as a diagnostic and prognostic tool for the assessment of solid tumors: implications in the precision oncology. J Clin Med 8:378–389

    Article  Google Scholar 

  5. 5.

    Siravegna G, Marsoni S, Siena S, Bardelli A (2017) Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 14:531–548

    CAS  Article  Google Scholar 

  6. 6.

    Cui S, Cheng Z, Qin W, Jiang L (2018) Exosomes as a liquid biopsy for lung cancer. Lung Cancer 116:46–54

    Article  Google Scholar 

  7. 7.

    Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113:3365–3374

    CAS  Google Scholar 

  8. 8.

    Kim J, Tan Z, Lubman DM (2015) Exosome enrichment of human serum using multiple cycles of centrifugation. Electrophoresis 36:2017–2026

    CAS  Article  Google Scholar 

  9. 9.

    Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med 91:431–437

    CAS  Article  Google Scholar 

  10. 10.

    Frydrychowicz M, Kolecka Bednarczyk A, Madejczyk M, Yasar S, Dworacki G (2015) Exosomes structure, biogenesis and biological role in non-small cell lung cancer. Scand J Immunol 81:2–10

    CAS  Article  Google Scholar 

  11. 11.

    Doldán X, Fagúndez P, Cayota A, Laíz J, Tosar JP (2016) Electrochemical sandwich immunosensor for determination of exosomes based on surface marker-mediated signal amplification. Anal Chem 88:10466–10473

    Article  Google Scholar 

  12. 12.

    Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ (2010) Atomic force microscopy of biological samples. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:618–634

    Article  Google Scholar 

  13. 13.

    Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte T, Hoen EN, Piper MG, Sivaraman S, Skog J (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:20360–20385

    Article  Google Scholar 

  14. 14.

    Chernyshev VS, Rachamadugu R, Tseng YH, Belnap DM, Jia Y, Branch KJ, Butterfield AE, Pease LF, Bernard PS, Skliar M (2015) Size and shape characterization of hydrated and desiccated exosomes. Anal Bioanal Chem 407:3285–3301

    CAS  Article  Google Scholar 

  15. 15.

    Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong C, Teng I, Shi M (2017) Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 11:3943–3949

    CAS  Article  Google Scholar 

  16. 16.

    Van der Pol E, Coumans FAW, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, Sturk A, van Leeuwen TG, Nieuwland R (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 12:1182–1192

    Article  Google Scholar 

  17. 17.

    Van Der Pol E, Hoekstra AG, Sturk A, Otto C, Van Leeuwen TG, Nieuwland R (2010) Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 8:2596–2607

    Article  Google Scholar 

  18. 18.

    Li J, Wang B, Gu S, Yang Y, Wang Z, Xiang Y (2017) Amperometric low potential aptasensor for the fucosylated Golgi protein 73, a marker for hepatocellular carcinoma. Microchim Acta 184:3131–3136

    CAS  Article  Google Scholar 

  19. 19.

    Williams PE, Klein DR, Greer SM, Brodbelt JS (2017) Pinpointing double bond andsn -positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. J Am Chem Soc 139:15681–15690

    CAS  Article  Google Scholar 

  20. 20.

    Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y (2018) Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal Chem 90:12737–12744

    CAS  Article  Google Scholar 

  21. 21.

    Kalimuthu K, Kwon WY, Park KS (2019) A simple approach for rapid and cost-effective quantification of extracellular vesicles using a fluorescence polarization technique. J Biol Eng 13:31–37

    Article  Google Scholar 

  22. 22.

    Shi L, Ba L, Xiong Y, Peng G (2019) A hybridization chain reaction based assay for fluorometric determination of exosomes using magnetic nanoparticles and both aptamers and antibody as recognition elements. Microchim Acta 186:796

    CAS  Article  Google Scholar 

  23. 23.

    Cao Y, Li L, Han B, Wang Y, Dai Y, Zhao J (2019) A catalytic molecule machine-driven biosensing method for amplified electrochemical detection of exosomes. Biosens Bioelectron 141:111397

    CAS  Article  Google Scholar 

  24. 24.

    Sina AAI, Vaidyanathan R, Wuethrich A, Carrascosa LG, Trau M (2019) Label-free detection of exosomes using a surface plasmon resonance biosensor. Anal Bioanal Chem 411:1311–1318

    CAS  Article  Google Scholar 

  25. 25.

    Lv X, Geng Z, Su Y, Fan Z, Wang S, Fang W, Chen H (2019) Label-free exosomal detection based on a low-cost plasmonic biosensor array integrated with microfluidics. Langmuir 35:9816–9824

    CAS  Article  Google Scholar 

  26. 26.

    Gong T, Liu J, Wu Y, Xiao Y, Wang X, Yuan S (2017) Fluorescence enhancement of CdTe quantum dots by HBcAb-HRP for sensitive detection of H2O2 in human serum. Biosens Bioelectron 92:16–20

    CAS  Article  Google Scholar 

  27. 27.

    Beyzavi K, Hampton S, Kwasowski P, Fickling S, Marks V, Clift R (1987) Comparison of horseradish peroxidase and alkaline phosphatase-labelled antibodies in enzyme immunoassays. Ann Clin Biochem 24:145–152

    CAS  Article  Google Scholar 

  28. 28.

    Wang Q, Cui H, Song X, Fan S, Chen L, Li M, Li Z (2018) A label-free and lectin-based sandwich aptasensor for detection of carcinoembryonic antigen. Sensors Actuators B Chem 260:48–54

    CAS  Article  Google Scholar 

  29. 29.

    Zhou J, Tang J, Chen G, Tang D (2014) Layer-by-layer multienzyme assembly for highly sensitive electrochemical immunoassay based on tyramine signal amplification strategy. Biosens Bioelectron 54:323–328

    CAS  Article  Google Scholar 

  30. 30.

    Wang Q, Xu N, Lei J, Ju H (2014) Regulative peroxidase activity of DNA-linked hemin by graphene oxide for fluorescence DNA sensing. Chem Commun 50:6714–6717

    CAS  Article  Google Scholar 

  31. 31.

    Ferguson SW, Nguyen J, Exosomes as therapeutics (2016) The implications of molecular composition and exosomal heterogeneity. J Control Release 228:179–190

    CAS  Article  Google Scholar 

  32. 32.

    Cheng N, Du D, Wang X, Liu D, Xu W, Luo Y, Lin Y (2019) Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol 4:19–38

    Google Scholar 

  33. 33.

    Chivers CE, Crozat E, Chu C, Moy VT, Sherratt DJ, Howarth M (2010) A streptavidin variant with slower biotin dissociation and increased mechanostability. Nat Methods 7:391–393

    CAS  Article  Google Scholar 

Download references

Funding

These works were supported by the National Natural Science Foundation of China (81872509), the Hubei Provincial Technology Innovation Project (2017ACA176), the Free Exploration Project of Hubei University of Medicine (FDFR201804), the Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine) (Grant No. WDCM2018004), the Research Project of Traditional Chinese Medicine of the Foundation of Health Commission of Hubei Province (ZY2019M034), the Scientific and Technology Project of Shiyan City of Hubei Province (Nos. 19Y87, 19Y88, and 19Y93), the Key Discipline Project of Hubei University of Medicine and Hubei Province health and family planning scientific research project (WJ2019M054), and the Innovative Research Program for Graduates of Hubei University of Medicine (YC2019021).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qinhua Chen or Jishun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 781 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Luo, D., Shang, B. et al. Immunoassay-type biosensor based on magnetic nanoparticle capture and the fluorescence signal formed by horseradish peroxidase catalysis for tumor-related exosome determination. Microchim Acta 187, 282 (2020). https://doi.org/10.1007/s00604-020-04275-x

Download citation

Keywords

  • Fluorescent biosensor
  • Cancer diagnosis
  • Sandwich structure
  • Biomarker
  • CD63
  • EpCAM