CuO/Cu composite nanospheres on a TiO2 nanotube array for amperometric sensing of glucose

Abstract

A non-enzymatic glucose sensor based on the use of CuO-Cu nanospheres placed on a TiO2 nanotube (TNT) array with excellent performance is described. The electrode was fabricated by coating the CuO-Cu nanospheres onto the TNT array through electrochemical deposition. The CuO-Cu nanospheres with a diameter of ~200 nm are well dispersed on the TNT surface, which warrants smooth interaction and a 3D nanostructure with high uniformity. The modified electrode was then used for amperometric determination of glucose in 0.1 M NaOH solution. Figures of merit include (a) a typical working voltage of 0.65 V (vs. Ag/AgCl). (b) a linear range as wide as from 0.2–90 mM, (c) good sensitivity (234 μA mM−1 cm−2), and a 19 nM lower detection limit. The sensor is selective over ascorbic acid (AA), dopamine (DA), uric acid (UA), lactose, sucrose, and fructose.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505

    CAS  Article  Google Scholar 

  2. 2.

    Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291. https://doi.org/10.1007/s00253-005-1980-8

    CAS  Article  Google Scholar 

  3. 3.

    Butler M, Meneses-Acosta A (2012) Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 96:885–894. https://doi.org/10.1007/s00253-012-4451-z

    CAS  Article  Google Scholar 

  4. 4.

    Adley C (2014) Past, present and future of sensors in food production. Foods 3:491–510. https://doi.org/10.3390/foods3030491

    CAS  Article  Google Scholar 

  5. 5.

    Hwang DW, Lee S, Seo M, Chung TD (2018) Recent advances in electrochemical non-enzymatic glucose sensors – a review. Anal Chim Acta 1033:1–34. https://doi.org/10.1016/j.aca.2018.05.051

    CAS  Article  Google Scholar 

  6. 6.

    Huang J, Zhu Y, Yang X, Chen W, Zhou Y, Li C (2015) Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled. Nanoscale 7:559–569. https://doi.org/10.1039/c4nr05620e

    CAS  Article  Google Scholar 

  7. 7.

    Dhara K, Mahapatra DR (2018) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185(1):49

    Article  Google Scholar 

  8. 8.

    Zhang P, Sun D, Cho A, Weon S, Lee S, Lee J, Han JW, Kim DP, Choi W (2019) Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat Commun 10:940. https://doi.org/10.1038/s41467-019-08731-y

    CAS  Article  Google Scholar 

  9. 9.

    Ahmadalinezhad A, Chatterjee S, Chen A (2013) Synthesis and electrochemical study of nanoporous palladium-cadmium networks for non-enzymatic glucose detection. Electrochim Acta 112:927–932. https://doi.org/10.1016/j.electacta.2013.05.143

    CAS  Article  Google Scholar 

  10. 10.

    Zhou X, Zheng X, Lv R, Kong D, Li Q (2013) Electrodeposition of platinum on poly (glutamic acid) modified glassy carbon electrode for non-enzymatic amperometric glucose detection. Electrochim Acta 107:164–169. https://doi.org/10.1016/j.electacta.2013.05.146

    CAS  Article  Google Scholar 

  11. 11.

    Chinnadayyala SR, Park I, Cho S (2018) Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Microchim Acta 185:250–258. https://doi.org/10.1007/s00604-018-2770-1

    CAS  Article  Google Scholar 

  12. 12.

    Zhong SL, Zhuang J, Yang DP, Tang D (2017) Eggshell membrane-templated synthesis of 3D hierarchical porous au networks for electrochemical nonenzymatic glucose sensor. Biosens Bioelectron 96:26–32. https://doi.org/10.1016/j.bios.2017.04.038

    CAS  Article  Google Scholar 

  13. 13.

    Pal N, Banerjee S, Bhaumik A (2018) A facile route for the syntheses of Ni (OH)2and NiO nanostructures as potential candidates for non-enzymatic glucose sensor. J Colloid Interface Sci 516:121–127. https://doi.org/10.1016/j.jcis.2018.01.027

    CAS  Article  Google Scholar 

  14. 14.

    Luo J, Jiang S, Zhang H, Jiang J, Liu X (2012) A novel non-enzymatic glucose sensor based on cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53. https://doi.org/10.1016/j.aca.2011.10.025

    CAS  Article  Google Scholar 

  15. 15.

    Gao H, Xiao F, Ching CB, Duan H (2011) One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Appl Mater Interfaces 3:3049–3057. https://doi.org/10.1021/am200563f

    CAS  Article  Google Scholar 

  16. 16.

    Wang R, Liang X, Liu H, Cui L, Zhang X, Liu C (2018) Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles. Microchim Acta 185:339. https://doi.org/10.1007/s00604-018-2866-7

    CAS  Article  Google Scholar 

  17. 17.

    Ryu J, Kim K, Kim HS, Hahn HT, Lashmore D (2010) Intense pulsed light induced platinum-gold alloy formation on carbon nanotubes for non-enzymatic glucose detection. Biosens Bioelectron 26:602–607. https://doi.org/10.1016/j.bios.2010.07.021

    CAS  Article  Google Scholar 

  18. 18.

    Yang J, Jiang L, Zhang W, Gunasekaran S (2010) Talanta A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide ( CuO ) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82:25–33. https://doi.org/10.1016/j.talanta.2010.03.047

    CAS  Article  Google Scholar 

  19. 19.

    Long M, Tan L, Liu H, He Z, Tang A (2014) Novel helical TiO2nanotube arrays modified by Cu2O for enzyme-free glucose oxidation. Biosens Bioelectron 59:243–250. https://doi.org/10.1016/j.bios.2014.03.032

    CAS  Article  Google Scholar 

  20. 20.

    Liu L, Wang Z, Yang J, Liu G, Li J, Guo L, Chen S, Guo Q (2018) NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sensors Actuators B Chem 258:920–928. https://doi.org/10.1016/j.snb.2017.11.118

    CAS  Article  Google Scholar 

  21. 21.

    Batool R, Akhtar MA, Hayat A, Han D, Niu L, Ahmad MA, Nawaz MH (2019) A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose. Microchim Acta 186:267. https://doi.org/10.1007/s00604-019-3364-2

    CAS  Article  Google Scholar 

  22. 22.

    Yu S, Peng X, Cao G, Zhou M, Qiao L, Yao J, He H (2012) Electrochimica Acta Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor. Electrochim Acta 76:512–517. https://doi.org/10.1016/j.electacta.2012.05.079

    CAS  Article  Google Scholar 

  23. 23.

    Li X, Yao J, Liu F, He H, Zhou M, Mao N, Xiao P, Zhang Y (2013) Sensors and actuators B : chemical nickel / copper nanoparticles modified TiO 2 nanotubes for non-enzymatic glucose biosensors. Sensors Actuators B Chem 181:501–508. https://doi.org/10.1016/j.snb.2013.02.035

    CAS  Article  Google Scholar 

  24. 24.

    Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2877–2887. https://doi.org/10.1002/adma.200890061

    Article  Google Scholar 

  25. 25.

    Xiang JY, Wang XL, Xia XH, Zhang L, Zhou Y, Shi SJ, Tu JP (2010) Enhanced high rate properties of ordered porous Cu2O film as anode for lithium ion batteries. Electrochim Acta 55:4921–4925. https://doi.org/10.1016/j.electacta.2010.03.091

    CAS  Article  Google Scholar 

  26. 26.

    Berry BN, Dobrowsky TM, Timson RC, Kshirsagar R, Ryll T, Wiltberger K (2016) Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture. Biotechnol Prog 32:224–234. https://doi.org/10.1002/btpr.2205

    CAS  Article  Google Scholar 

  27. 27.

    Zhu H, Li L, Zhou W, Shao Z, Chen X (2016) Advances in non-enzymatic glucose sensors based on metal oxides. J Mater Chem B 4:7333–7349. https://doi.org/10.1039/C6TB02037B

    CAS  Article  Google Scholar 

  28. 28.

    Liu M, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212. https://doi.org/10.1016/j.bios.2013.02.010

    CAS  Article  Google Scholar 

  29. 29.

    Zhuang Z, Su X, Yuan H, Sun Q, Xiao D, Choi MMF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified cu electrode. Analyst 133:126–132. https://doi.org/10.1039/b712970j

    CAS  Article  Google Scholar 

  30. 30.

    Jiang LC, De Zhang W (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407. https://doi.org/10.1016/j.bios.2009.10.038

    CAS  Article  Google Scholar 

  31. 31.

    Yang Q, Long M, Tan L, Zhang Y, Ouyang J, Liu P, Tang A (2015) Helical TiO<inf>2</inf> nanotube arrays modified by Cu-Cu<inf>2</inf>O with ultrahigh sensitivity for the nonenzymatic electro-oxidation of glucose. ACS Appl Mater Interfaces 7:12719–12730. https://doi.org/10.1021/acsami.5b03401

    CAS  Article  Google Scholar 

  32. 32.

    Wang J, De Zhang W (2011) Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose. Electrochim Acta 56:7510–7516. https://doi.org/10.1016/j.electacta.2011.06.102

    CAS  Article  Google Scholar 

  33. 33.

    Wei H, Sun JJ, Guo L, Li X, Chen GN (2009) Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode. Chem Commun 2842–2844 . https://doi.org/10.1039/b904673a

  34. 34.

    Zhou Y, Ni X, Ren Z, Ma J, Xu J, Chen X (2017) A flower-like NiO-SnO2nanocomposite and its non-enzymatic catalysis of glucose. RSC Adv 7:45177–45184. https://doi.org/10.1039/c7ra07582k

    CAS  Article  Google Scholar 

  35. 35.

    Ahmad R, Vaseem M, Tripathy N, Hahn YB (2013) Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes. Anal Chem 85:10448–10454. https://doi.org/10.1021/ac402925r

    CAS  Article  Google Scholar 

  36. 36.

    Zhang X, Wang G, Liu X, Wu J, Li M, Gu J, Liu H, Fang B (2008) Different CuO nanostructures: synthesis, characterization, and applications for glucose sensors. J Phys Chem C 112:16845–16849. https://doi.org/10.1021/jp806985k

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation (CBET-1805514) to HSZ.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong Susan Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhu, Z., Cui, F. et al. CuO/Cu composite nanospheres on a TiO2 nanotube array for amperometric sensing of glucose. Microchim Acta 187, 123 (2020). https://doi.org/10.1007/s00604-019-4099-9

Download citation

Keywords

  • CuO-Cu nanospheres
  • TiO2 nanotube arrays
  • Amperometric sensing
  • Wide analytical range
  • Enzymeless sensing
  • Glucose sensor