Skip to main content
Log in

Target induced framework nucleic acid nanomachine with doxorubicin-spherical nucleic acid tags for electrochemical determination of human telomerase activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A stable and enzyme-free method is described for highly sensitive determination of telomerase activity. It is based on the use of a framework nucleic acid (FNA) nanomachine and doxorubicin-spherical nucleic acid (DSNA) tags. Upon incubation with telomerase, the primer-tetrahedron becomes elongated to form the handed swing arm. The extended swing arm autonomously moves along the predefined track consisting of entropy-tetrahedron by consecutive strand displacement under the aid of fuel-tetrahedron. As a result, many (entropy-tetrahedron)-(fuel-tetrahedron) complexes are assembled for combining the DSNA tags. This results in an amplified electrochemical signal, typically measured at around −0.63 V (Ag/AgCl). The use of an enzyme-free FNA nanomachine and of DSNA tags warrants outstandingly high stability and sensitivity. The method shows a broad dynamic correlation of telomerase activity in cell extracts. The analytical range extends from 10 to 1.0 × 104 HeLa cells mL−1 with a lower detection limit of 2 cells mL−1. The differences in telomerase activity between different cancer cells can be easily evaluated. The method was further verified by quantifying telomerase activity of cancer cells in accumulated normal cells. Therefore, the sensing method has great potential for clinical application.

Schematic representation of the electrochemical biosensor based on target induced framework nucleic acid nanomachine with doxorubicin-spherical nucleic acids (DSNA) tags, which can be used to the determination of telomerase activity in accumulated normal cells. dNTP: Deoxynucleotide triphosphates; FT: Fuel-tetrahedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853

    Article  CAS  Google Scholar 

  2. Shay JW, Wright WE (2019) Telomeres and telomerase: three decades of progress. Nat Rev Genet 20:299–309

    Article  CAS  Google Scholar 

  3. Wang LJ, Ma F, Tang B, Zhang CY (2017) Sensing telomerase: from detection to imaging. Chem Sci 8:2495–2502

    Article  CAS  Google Scholar 

  4. Zhou XM, Xing D (2012) Assays for human telomerase activity: progress and prospects. Chem Soc Rev 41:4643–4656

    Article  CAS  Google Scholar 

  5. Lee ST, Rahman R, Muthoosamy K, Mohamed NAH, Su X, Tayyab S, New SY (2019) Amplification-free and direct fluorometric determination of telomerase activity in cell lysates using chimeric DNA-templated silver nanoclusters. Microchim Acta 186:81

    Article  Google Scholar 

  6. Ma F, Wang TT, Jiang L, Zhang CY (2019) Ultrasensitive detection of telomerase activity in lung cancer cells with quencher-free molecular beacon-assisted quadratic signal amplification. Anal Chim Acta 1053:112–130

    Article  Google Scholar 

  7. Peng M, Na N, Ouyang J (2019) A fluorescence light-up silver nanocluster beacon modulated by metal ions and its application in telomerase-activity detection. Chemistry 25(14):3598–3605

    Article  CAS  Google Scholar 

  8. Yang H, Liu A, Wei M, Liu Y, Lv B, Wei W, Zhang Y, Liu S (2017) Visual, label-free telomerase activity monitor via enzymatic etching of gold nanorods. Anal Chem 89:12094–12100

    Article  CAS  Google Scholar 

  9. Wang D, Guo R, Wei Y, Zhang Y, Zhao X, Xu Z (2018) Sensitive multicolor visual detection of telomerase activity based on catalytic hairpin assembly and etching of Au nanorods. Biosens Bioelectron 122:247–253

    Article  CAS  Google Scholar 

  10. Meng F, Xu Y, Dong W et al (2018) A PCR-free voltammetric telomerase activity assay using a substrate primer on a gold electrode and DNA-triggered capture of gold nanoparticles. Microchim Acta 185:398

    Article  Google Scholar 

  11. Wang G, Wang H, Cao S, Xiang W, Li T, Yang M (2019) Electrochemical determination of the activity and inhibition of telomerase based on the interaction of DNA with molybdate. Microchim Acta 186:96

    Article  Google Scholar 

  12. Zhang X, Lou X, Xia F (2017) Advances in the detection of telomerase activity using isothermal amplification. Theranostics 7:1847–1862

    Article  CAS  Google Scholar 

  13. Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ (2018) Functional-DNA-driven dynamic nanoconstructs for biomolecule capture and drug delivery. Adv Mater 30:1707351

    Article  Google Scholar 

  14. Scalise D, Schulman R (2019) Controlling matter at the molecular scale with DNA circuits. Annu Rev Biomed Eng 21:469–493

    Article  CAS  Google Scholar 

  15. Wang H, Wang H, Liu C, Duan X, Li Z (2016) Ultrasensitive detection of telomerase activity in a single cell using stem-loop primer-mediated exponential amplification (SPEA) with near zero nonspecific signal. Chem Sci 7:4945–4950

    Article  Google Scholar 

  16. Li CC, Zhang Y, Liu WJ, Zhang CY (2018) A triple-amplification strategy for sensitive detection of telomerase at the single-cell level. Chem Commun 54:9317–9320

    Article  CAS  Google Scholar 

  17. Wang W, Huang S, Li J, Rui K, Bi S, Zhang JR, Zhu JJ (2017) Evaluation of intracellular telomerase activity through cascade DNA logic gates. Chem Sci 8:174–180

    Article  Google Scholar 

  18. Xu X, Wang L, Li K, Huang Q, Jiang W (2018) A smart DNA tweezer for detection of human telomerase activity. Anal Chem 90:3521–3530

    Article  CAS  Google Scholar 

  19. Wang Z, Hou R, Loh IY (2019) Track-walking molecular motors: a new generation beyond bridge-burning designs. Nanoscale 11:9240–9263

    Article  CAS  Google Scholar 

  20. Huang J, Zhu L, Ju H, Lei J (2019) Telomerase triggered DNA Walker with a superhairpin structure for human telomerase activity sensing. Anal Chem 91:6981–6985

    Article  CAS  Google Scholar 

  21. Li X, Cheng W, Li D, Wu J, Ding X, Cheng Q, Ding S (2016) A novel surface plasmon resonance biosensor for enzyme-free and highly sensitive detection of microRNA based on multi component nucleic acid enzyme (MNAzyme)-mediated catalyzed hairpin assembly. Biosens Bioelectron 80:98–104

    Article  CAS  Google Scholar 

  22. Yang F, Li Q, Wang L, Zhang GJ, Fan C (2018) Framework-nucleic-acid-enabled biosensor development. ACS Sens 3:903–919

    Article  CAS  Google Scholar 

  23. Ge Z, Gu H, Li Q, Fan C (2018) Concept and development of framework nucleic acids. J Am Chem Soc 140:17808–17819

    Article  CAS  Google Scholar 

  24. Ye D, Zuo X, Fan C (2018) DNA nanotechnology-enabled interfacial engineering for biosensor development. Annu Rev Anal Chem 11:171–195

    Article  CAS  Google Scholar 

  25. Bui H, Shah S, Mokhtar R, Song T, Garg S, Reif J (2018) Localized DNA hybridization chain reactions on DNA origami. ACS Nano 12:1146–1155

    Article  CAS  Google Scholar 

  26. He L, Lu D, Liang H, Xie S, Zhang X, Liu Q, Yuan Q, Tan W (2018) mRNA-initiated, three-dimensional DNA amplifier able to function inside living cells. J Am Chem Soc 140:258–263

    Article  CAS  Google Scholar 

  27. Yan T, Zhu L, Ju H, Lei J (2018) DNA-Walker-induced allosteric switch for tandem signal amplification with palladium nanoparticles/metal-organic framework tags in electrochemical biosensing. Anal Chem 90:14493–14499

    Article  CAS  Google Scholar 

  28. Chinen AB, Guan CM, Ko CH, Mirkin CA (2017) The impact of protein corona formation on the macrophage cellular uptake and biodistribution of spherical nucleic acids. Small 13(16):1603847

    Article  Google Scholar 

  29. Zhang K, Hao L, Hurst SJ, Mirkin CA (2012) Antibody-linked spherical nucleic acids for cellular targeting. J Am Chem Soc 134(40):16488–16491

    Article  CAS  Google Scholar 

  30. Tan X, Lu X, Jia F, Liu X, Sun Y, Logan JK, Zhang K (2016) Blurring the role of oligonucleotides: spherical nucleic acids as a drug delivery vehicle. J Am Chem Soc 138:10834–10837

    Article  CAS  Google Scholar 

  31. Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Engl 45(48):8149–8152

    Article  CAS  Google Scholar 

  32. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252

    Article  CAS  Google Scholar 

  33. Jiang Q, Song C, Nangreave J, Liu X, Lin L, Qiu D, Wang ZG, Zou G, Liang X, Yan H, Ding B (2012) DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc 134(32):13396–13403

    Article  CAS  Google Scholar 

  34. Qian R, Ding L, Yan L, Lin M, Ju H (2014) Smart vesicle kit for in situ monitoring of intracellular telomerase activity using a telomerase-responsive probe. Anal Chem 86(17):8642–8648

    Article  CAS  Google Scholar 

  35. Haiss W, Thanh NT, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 79(11):4215–4221

    Article  CAS  Google Scholar 

  36. Wang L, Meng T, Yu G, Wu S, Sun J, Jia H, Wang H, Yang X, Zhang Y (2019) A label-free electrochemical biosensor for ultrasensitively detecting telomerase activity based on the enhanced catalytic currents of acetaminophen catalyzed by au nanorods. Biosens Bioelectron 124-125:53–58

    Article  CAS  Google Scholar 

  37. Li X, Cui Y, Du Y, Tang A, Kong D (2019) Label-free telomerase detection in single cell using a five-base telomerase product-triggered exponential rolling circle amplification strategy. ACS Sens 4(4):1090–1096

    Article  CAS  Google Scholar 

  38. Xiong C, Liang W, Zheng Y, Zhuo Y, Chai Y, Yuan R (2017) Ultrasensitive assay for telomerase activity via Selfenhanced Electrochemiluminescence ruthenium complex doped metal-organic frameworks with high emission efficiency. Anal Chem 89:3222–3227

    Article  CAS  Google Scholar 

  39. Kazemi E, Bagheri H, Norouzian D (2019) A turn-on graphene quantum dot and graphene oxide based fluorometric aptasensor for the determination of telomerase activity. Microchim Acta 186(12):785

    Article  CAS  Google Scholar 

  40. He C, Liu Z, Wu Q, Zhao J, Liu R, Liu B, Zhao T (2018) Ratiometric fluorescent biosensor for visual discrimination of cancer cells with different telomerase expression levels. ACS Sens 3:757–762

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Health Commission of Henan Province (No.2018020495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Shen.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Gong, J., Xu, Q. et al. Target induced framework nucleic acid nanomachine with doxorubicin-spherical nucleic acid tags for electrochemical determination of human telomerase activity. Microchim Acta 187, 97 (2020). https://doi.org/10.1007/s00604-019-4095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4095-0

Keywords

Navigation