Skip to main content
Log in

Paper-based device for the colorimetric assay of bilirubin based on in-situ formation of gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A paper-based colorimetric assay for the determination of bilirubin has been developed. The method is based on the in-situ reduction of chloroauric acid to form gold nanoparticles. A chromatographic paper was patterned using a wax printer. Chloroauric acid was drop-cast onto the reagent zone. In the presence of bilirubin, gold(III) ions are reduced and form gold nanoparticles. This leads to a color change from yellow to purple. The intensity of the purple color (peak at 530 nm) increases with bilirubin concentration in the 5.0 to 1000 mg L−1 range. The detection limit is 1.0 mg L−1. For the quantification of bilirubin, images were captured using a digital camera, and data were processed with the help of machine learning-based supervised prediction using Random Forest classification. The method was applied to the determination of bilirubin in urine samples. The spiked urine samples exhibit more than 95% recovery.

Schematic representation of the paper-based colorimetric assay for the detection of bilirubin based on the in-situ formation of gold nanoparticles. A color band is generated for visual interpretation and used for the testing of bilirubin in urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schmid R (1957) The identification of direct-reacting bilirubin as bilirubin glucuronide. J Biol Chem 229(2):881–888

    CAS  PubMed  Google Scholar 

  2. Lucey JF, Dolan RG (1958) Hyperbilirubinemia in infants. J Am Med Assoc 167(15):1875–1875

    Article  Google Scholar 

  3. Ehrlich P (1884) Sulfodiazobenzol als reagens auf bilirubin. Fresen J Anal Chem 23(1):275–276

    Article  Google Scholar 

  4. Doumas BT, Kwok-Cheung PP, Perry BW, Jendrzejczak B, McComb RB, Schaffer R, Hause LL (1985) Candidate reference method for determination of total bilirubin in serum: development and validation. Clin Chem 31(11):1779–1789

    Article  CAS  Google Scholar 

  5. Ameri M, Schnaars H, Sibley J, Honor D (2011) Comparison of the vanadate oxidase method with the diazo method for serum bilirubin determination in dog, monkey, and rat. J Vet Diagn Investig 23(1):120–123

    Article  Google Scholar 

  6. Lauff JJ, Kasper ME, Ambrose R (1983) Quantitative liquid-chromatographic estimation of bilirubin species in pathological serum. Clin Chem 29(5):800–805

    Article  CAS  Google Scholar 

  7. Zelenka J, Leníček M, Muchová L, Jirsa M, Kudla M, Balaž P, Zadinová M, Ostrow JD, Wong RJ, Vítek L (2008) Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J Chromatogr B 867(1):37–42

    Article  CAS  Google Scholar 

  8. Martelanc M, Žiberna L, Passamonti S, Franko M (2014) Direct determination of free bilirubin in serum at sub-nanomolar levels. Anal chim 809:174–182

    Article  CAS  Google Scholar 

  9. Martelanc M, Žiberna L, Passamonti S, Franko M (2016) Application of high-performance liquid chromatography combined with ultra-sensitive thermal lens spectrometric detection for simultaneous biliverdin and bilirubin assessment at trace levels in human serum. Talanta 154:92–98

    Article  CAS  Google Scholar 

  10. Fung YS, Sun DX, Yeung CY (2000) Capillary electrophoresis for determination of free and albumin-bound bilirubin and the investigation of drug interaction with bilirubin-bound albumin. Electrophoresis 21(2):403–410

    Article  CAS  Google Scholar 

  11. Sun H, Nie Z, Fung YS (2010) Determination of free bilirubin and its binding capacity by hsa using a microfluidic chip-capillary electrophoresis device with a multi-segment circular-ferrofluid-driven micromixing injection. Electrophoresis 31(18):3061–3069

    Article  CAS  Google Scholar 

  12. Nie Z, Fung YS (2008) Microchip capillary electrophoresis for frontal analysis of free bilirubin and study of its interaction with human serum albumin. Electrophoresis 29(9):1924–1931

    Article  CAS  Google Scholar 

  13. Raveendran J, Stanley J, Babu TS (2018) Voltammetric determination of bilirubin on disposable screen printed carbon electrode. J Electroanal Chem 818:124–130

    Article  CAS  Google Scholar 

  14. Kazmierczak SC, Robertson AF, Catrou PG, Briley KP, Kreamer BL, Gourley GR (2002) Direct spectrophotometric method for measurement of bilirubin in newborns: comparison with HPLC and an automated diazo method. Clin Chem 48(7):1096–1097

    CAS  PubMed  Google Scholar 

  15. Fernández-Romero J, De Castro ML, Valcárcel M (1993) Flow-injection spectrophotometric enzymatic and non-enzymatic methods for the determination of direct and total bilirubin in serum. Anal chim 276(2):271–279

    Article  Google Scholar 

  16. Vichapong J, Burakham R, Teshima N, Srijaranai S, Sakai T (2013) Alternative spectrophotometric method for determination of bilirubin and urobilinogen in urine samples using simultaneous injection effective mixing flow analysis. Anal Methods 5(9):2419–2426

    Article  CAS  Google Scholar 

  17. Senthilkumar T, Asha S (2015) Selective and sensitive sensing of free bilirubin in human serum using water-soluble Polyfluorene as fluorescent probe. Macromolecules 48(11):3449–3461

    Article  CAS  Google Scholar 

  18. Anjana R, Devi JA, Jayasree M, Aparna R, Aswathy B, Praveen G, Lekha G, Sony G (2018) S, N-doped carbon dots as a fluorescent probe for bilirubin. Microchim Acta 185(1):11

    Article  Google Scholar 

  19. Jayasree M, Aparna R, Anjana R, Devi JA, John N, Abha K, Manikandan A, George S (2018) Fluorescence turn on detection of bilirubin using Fe (III) modulated BSA stabilized copper nanocluster; a mechanistic perception. Anal chim 1031:152–160

    Article  CAS  Google Scholar 

  20. Rajamanikandan R, Ilanchelian M (2019) Red emitting human serum albumin templated copper nanoclusters as effective candidates for highly specific biosensing of bilirubin. Mater Sci Eng C 98:1064–1072

    Article  CAS  Google Scholar 

  21. Santhosh M, Chinnadayyala SR, Kakoti A, Goswami P (2014) Selective and sensitive detection of free bilirubin in blood serum using human serum albumin stabilized gold nanoclusters as fluorometric and colorimetric probe. Biosens Bioelectron 59:370–376

    Article  CAS  Google Scholar 

  22. Shanmugaraj K, John SA (2019) Water-soluble MoS2 quantum dots as effective fluorescence probe for the determination of bilirubin in human fluids. Spectrochim Acta A Mol Biomol Spectrosc 215:290–296

    Article  CAS  Google Scholar 

  23. Basu S, Sahoo AK, Paul A, Chattopadhyay A (2016) Thumb imprint based detection of hyperbilirubinemia using luminescent gold nanoclusters. Sci Rep 6:39005

    Article  CAS  Google Scholar 

  24. Shukla SP, Roy M, Mukherjee P, Tyagi AK, Mukherjee T, Adhikari S (2012) Interaction of bilirubin with Ag and au ions: green synthesis of bilirubin-stabilized nanoparticles. J. Nanoparticle res 14 (7):981

  25. Maity M, Das S, Maiti NC (2014) Stability and binding interaction of bilirubin on a gold nano-surface: steady state fluorescence and FT-IR investigation. Phys Chem Chem Phys 16(37):20013–20022

    Article  CAS  Google Scholar 

  26. Kim H, Awofeso O, Choi S, Jung Y, Bae E (2017) Colorimetric analysis of saliva–alcohol test strips by smartphone-based instruments using machine-learning algorithms. Appl Opt 56(1):84–92

    Article  CAS  Google Scholar 

  27. Mutlu AY, Kılıç V, Özdemir GK, Bayram A, Horzum N, Solmaz ME (2017) Smartphone-based colorimetric detection via machine learning. Analyst 142(13):2434–2441

    Article  CAS  Google Scholar 

  28. Karisen H, Dong T Illumination and device independence for colorimetric detection of urinary biomarkers with smartphone. In: 2016 38th Conf Proc IEEE Eng Med Biol Soc. (EMBC), 2016. IEEE, pp 5184–5187

  29. Rodrigues A, Correia N, Fortunato E Mellitus: A Smartphone Application for Image Processing and Colorimetric Analysis. In: Proceedings of the 17th International Conference on Mobile and Ubiquitous Multimedia, 2018. ACM, pp 449–455

  30. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12(Oct):2825–2830

    Google Scholar 

  31. Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T (2014) Scikit-image: image processing in python. PeerJ- J environ Sci - 2(6): e453

    Article  Google Scholar 

  32. Rand RN, di Pasqua A (1962) A new diazo method for the determination of bilirubin. Clin Chem 8(6):570–578

    CAS  PubMed  Google Scholar 

  33. Ellairaja S, Shenbagavalli K, Ponmariappan S, Vasantha VS (2017) A green and facile approach for synthesizing imine to develop optical biosensor for wide range detection of bilirubin in human biofluids. Biosens Bioelectron 91:82–88

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Biotechnology (DBT), Government of India for financial support (Sanction no. 102/IFD/SAN/2238/2016-17 dated 30-8-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satheesh Babu Thekkedath Gopalakrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edachana, R.P., Kumaresan, A., Balasubramanian, V. et al. Paper-based device for the colorimetric assay of bilirubin based on in-situ formation of gold nanoparticles. Microchim Acta 187, 60 (2020). https://doi.org/10.1007/s00604-019-4051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4051-z

Keywords

Navigation