Skip to main content
Log in

Maltodextrin-modified graphene oxide for improved enantiomeric separation of six basic chiral drugs by open-tubular capillary electrochromatography

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochromatographic capillary was modified with graphene oxide (GO), and the coating was characterized by scanning electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectra. By utilizing maltodextrin (MD) as the chiral selector, the basic chiral drugs nefopam (NEF), amlodipine (AML), citalopram hydrobromide (CIT), econazole (ECO), ketoconazole (KET) and cetirizine hydrochloride (CET) can be enantiomerically separated on this CEC. Compared with an uncoated silica capillary, the resolutions are markedly improved (AML: 0.32 → 1.45; ECO: 0.55 → 1.89; KET: 0.88 → 4.77; CET: 0.81 → 2.46; NEF: 1.46 → 2.83; CIT: 1.77 → 4.38). Molecular modeling was applied to demonstrate the mechanism of enantioseparation, which showed a good agreement with the experimental results.

Schematic representation of the preparation of graphene oxide-modified capillary (GO@capillary) for enantioseparation of drug enantiomers. The monolayered GO was used as the coating of the GO@capillary. Then the capillary was applied to construct capillary electrochromatography system with maltodextrin for separation of basic chiral drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Faustino M. Tarongoy Jr., Paul R. Haddad, Joselito P. Quirino. (2018) Recent developments in open tubular capillary Electrochromatography from 2016-2017. Electrophoresis 39(1):34–52. https://doi.org/10.1002/elps.201700280

    Article  PubMed  Google Scholar 

  2. Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C (2018) Recent advances in microscale separation. Electrophoresis 39(1):8–33. https://doi.org/10.1002/elps.201700271

    Article  CAS  PubMed  Google Scholar 

  3. Declerck S, Vander Heyden Y, Mangelings D (2016) Enantioseparations of pharmaceuticals with capillary electrochromatography: a review. J Pharm Biomed Anal 130:81–99. https://doi.org/10.1016/j.jpba.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  4. Guihen E, Glennon JD (2004) Recent highlights in stationary phase design for open-tubular capillary electrochromatography. J Chromatogr A 1044(1–2):67–81. https://doi.org/10.1016/j.chroma.2004.05.107

    Article  CAS  PubMed  Google Scholar 

  5. Liu Z, Otsuka K, Terabe S (2002) Evaluation of extended light path capillary and etched capillary for use in open tubular capillary electrochromatography. J Chromatogr A 961(2):285–291. https://doi.org/10.1016/S0021-9673(02)00662-3

    Article  CAS  PubMed  Google Scholar 

  6. Yang L, Guihen E, Holmes JD, Loughran M, O'Sulliva GP, Glennon JD (2005) Gold nanoparticle-modified etched capillaries for open-tubular capillary electrochromatography. Anal Chem 77(6):1840–1846. https://doi.org/10.1021/ac048544x

    Article  CAS  PubMed  Google Scholar 

  7. Gong Z, Duan L, Tang A (2015) Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchim Acta 182(7–8):1297–1304. https://doi.org/10.1007/s00604-015-1449-0

    Article  CAS  Google Scholar 

  8. Yang X, Sun X, Feng Z, Du Y, Chen J, Ma X, Li X (2019) Open-tubular capillary electrochromatography with-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids. Microchim Acta 186(4):244. https://doi.org/10.1007/s00604-019-3318-8

    Article  CAS  Google Scholar 

  9. Sun X, Tao Y, Du Y, Ding W, Chen C, Ma X (2019) Metal organic framework HKUST-1 modified with carboxymethyl-β-cyclodextrin for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs. Microchim Acta 186(7):462. https://doi.org/10.1007/s00604-019-3584-5

    Article  CAS  Google Scholar 

  10. González-Curbelo MÁ, Varela-Martínez DA, Socas-Rodríguez B, Hernández-Borges J (2017) Recent applications of nanomaterials in capillary electrophoresis. Electrophoresis 38(19):2431–2446. https://doi.org/10.1002/elps.201700178

    Article  CAS  PubMed  Google Scholar 

  11. Geng Z, Song Q, Yu B, Cong H (2018) Using ZIF-8 as stationary phase for capillary electrophoresis separation of proteins. Talanta 188:493–498. https://doi.org/10.1016/j.talanta.2018.06.027

    Article  CAS  PubMed  Google Scholar 

  12. Adam V, Vaculovicova M (2017) Nanomaterials for sample pretreatment prior to capillary electrophoretic analysis. Analyst 142(6):849–857. https://doi.org/10.1039/C6AN02643E

    Article  CAS  PubMed  Google Scholar 

  13. Tahriri M, Del Monico M, Moghanian A, Tavakkoli Yaraki M, Torres R, Yadegari A, Tayebi L (2019) Graphene and its derivatives: opportunities and challenges in dentistry. Mater Sci Eng C Mater Biol Appl 102:171–185. https://doi.org/10.1016/j.msec.2019.04.051

    Article  CAS  PubMed  Google Scholar 

  14. Aydogdu MO, Ekren N, Suleymanoglu M, Erdem-Kuruca S, Lin CC, Bulbul E, Erdol MN, Oktar FN, Terzi UK, Kilic O, Gunduz O (2018) Novel electrospun polycaprolactone/graphene oxide/Fe3O4 nanocomposites for biomedical applications. Colloids Surf B: Biointerfaces 172:718–727. https://doi.org/10.1016/j.colsurfb.2018.09.035

    Article  CAS  PubMed  Google Scholar 

  15. Moretta R, Terracciano M, Dardano P, Casalino M, De Stefano L, Schiattarella C, Rea I (2018) Toward multi-parametric porous silicon transducers based on covalent grafting of Graphene oxide for biosensing applications. Front Chem 6:583. https://doi.org/10.3389/fchem.2018.00583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Landi G, Sorrentino A, Iannace S, Neitzert HC (2017) Differences between graphene and graphene oxide in gelatin based systems for transient biodegradable energy storage applications. Nanotechnology 28(5):054005 https://iopscience.iop.org/article/10.1088/1361-6528/28/5/054005

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Qi Y, Yin C, Wang S, Zhang S, Xu A, Chen W, Liu S (2018) Bio-transformation of Graphene oxide in lung fluids significantly enhances its Photothermal efficacy. Nanotheranostics 2(3):222–232 http://www.ntno.org/v02p0222.htm

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chung C, Kim Y, Shin D, Ryoo S, Hong B, Min D (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46(10):2211–2224. https://doi.org/10.1021/ar300159f

    Article  CAS  PubMed  Google Scholar 

  19. Zhang H, Yan T, Xu S, Feng S, Huang D, Fujita M, Gao XD (2017) Graphene oxide-chitosan nanocomposites for intracellular delivery of immunostimulatory CpG oligodeoxynucleotides. Mater Sci Eng C Mater Biol Appl 73:144–151. https://doi.org/10.1016/j.msec.2016.12.072

    Article  CAS  PubMed  Google Scholar 

  20. Xu X, Wang J, Wang Y, Zhao L, Li Y, Liu C (2018) Formation of graphene oxide-hybridized nanogels for combinative anticancer therapy. Nanomedicine 14(7):2387–2395. https://doi.org/10.1016/j.nano.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Hai X, Wang J (2016) Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: a review. Anal Chim Acta 922:1–10. https://doi.org/10.1016/j.aca.2016.03.050

    Article  CAS  PubMed  Google Scholar 

  22. Cheng H, Zhang W, Wang Y, Liu J (2018) Graphene oxide as a stationary phase for speciation of inorganic and organic species of mercury, arsenic and selenium using HPLC with ICP-MS detection. Mikrochim Acta 185(9):425–428. https://doi.org/10.1007/s00604-018-2960-x

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Zhang WP, Bao T, Chen ZL (2014) Enhancement of capillary electrochromatographic separation performance by conductive polymer in layer-by-layer fabricated graphene stationary phase. J Chromatogr A 1339:192–199. https://doi.org/10.1016/j.chroma.2014.02.083

    Article  CAS  PubMed  Google Scholar 

  24. Wang C, de Rooy S, Lu CF, Fernand V, Moore L Jr, Berton P, Warner IM (2013) An immobilized graphene oxide stationary phase for open-tubular capillary electrochromatography. Electrophoresis 34(8):1197–1202. https://doi.org/10.1002/elps.201200497

    Article  CAS  PubMed  Google Scholar 

  25. Gao X, Mo R, Ji Y (2015) Preparation and characterization of tentacle-type polymer stationary phase modified with graphene oxide for open-tubular capillary electrochromatography. J Chromatogr A 1400:19–26. https://doi.org/10.1016/j.chroma.2015.04.039

    Article  CAS  PubMed  Google Scholar 

  26. Zhao H, Wang Y, Cheng H, Shen Y (2016) Graphene oxide decorated monolithic column as stationary phase for capillary electrochromatography. J Chromatogr A 1452:27–35. https://doi.org/10.1016/j.chroma.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  27. Tabani H, Fakhari AR, Nojavan S (2014) Maltodextrins as chiral selectors in CE: molecular structure effect of basic chiral compounds on the enantioseparation. Chirality 26(10):620–628. https://doi.org/10.1002/chir.22344

    Article  CAS  PubMed  Google Scholar 

  28. Quigley GJ, Sarko A, Marchessault RH (1970) Crystal and molecular structure of maltose monohydrate. J Am Chem Soc 92(20):5834–5839. https://doi.org/10.1021/ja00723a003

    Article  CAS  Google Scholar 

  29. Kuttel MM, Naidoo KJ (2005) Free energy surfaces for the α (1 → 4)-glycosidic linkage: implications for polysaccharide solution structure and dynamics. J Phys Chem B 109(15):7468–7474. https://doi.org/10.1021/jp044756m

    Article  CAS  PubMed  Google Scholar 

  30. Liu Z, Du Y, Feng Z (2017) Enantioseparation of drugs by capillary electrochromatography using a stationary phase covalently modified with graphene oxide. Microchim Acta 184(2):583–593. https://doi.org/10.1007/s00604-016-2014-1

    Article  CAS  Google Scholar 

  31. Zhao S, Yu T, Du Y (2019) An organic polymer monolith modified with an amino acid ionic liquid and graphene oxide for use in capillary electrochromatography: application to the separation of amino acids, β-blockers, and nucleotides. Microchim Acta 186:636. https://doi.org/10.1007/s00604-019-3723-z

    Article  CAS  Google Scholar 

  32. Ma XF, Du Y, Sun XD (2019) Synthesis and application of amino alcohol-derived chiral ionic liquids, as additives for enantioseparation in capillary electrophoresis. J Chromatogr A 1601:340–349. https://doi.org/10.1016/j.chroma.2019.04.040

    Article  CAS  PubMed  Google Scholar 

  33. Hong T, Chen X, Xu Y, Cui X, Bai R, Jin C, Li R, Ji Y (2016) Preparation of graphene oxide-modified affinity capillary monoliths based on three types of amino donor for chiral separation and proteolysis. J Chromatogr A 1456:249–256. https://doi.org/10.1016/j.chroma.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  34. Qu Q, Gu C, Hu X (2012) Capillary coated with Graphene and Graphene oxide sheets as stationary phase for capillary Electrochromatography and capillary liquid chromatography. Anal Chem 84:8880–8890. https://doi.org/10.1021/ac3023636

    Article  CAS  PubMed  Google Scholar 

  35. Liu XL, Liu X (2013) Graphene oxide and reduced graphene oxide as novel stationary phases via electrostatic assembly for open-tubular capillary electrochromatography. Electrophoresis 34:1869–1876. https://doi.org/10.1002/elps.201300046

    Article  CAS  PubMed  Google Scholar 

  36. Liang R, Liu C (2012) A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase. J Chromatogr A 1266:95–102. https://doi.org/10.1016/j.chroma.2012.09.101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful for financial support from the Natural Science Foundation of Jiangsu Province (Program No.: BK20141353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiang Du.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Xi, Y., Du, Y. et al. Maltodextrin-modified graphene oxide for improved enantiomeric separation of six basic chiral drugs by open-tubular capillary electrochromatography. Microchim Acta 187, 55 (2020). https://doi.org/10.1007/s00604-019-4037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4037-x

Keywords

Navigation