Skip to main content
Log in

Colorimetric determination of the early biomarker hypoxia-inducible factor-1 alpha (HIF-1α) in circulating exosomes by using a gold seed-coated with aptamer-functionalized Au@Au core-shell peroxidase mimic

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultra-sensitive method is described here for the determination of HIF-1α (an early biomarker for myocardial infarction) in circulating exosomes in serum. Gold nanospheres were functionalized with a HIF-1α-binding aptamer via sulfydryl chemistry. The apt-AuNP-coated gold seeds were grown by seed-mediated growth, and this significantly increased the peroxidase-mimicking property the nanoparticles. A chromogenic system composed of 3,3′5,5′-tetramethylbenzidine and hydrogen peroxide was used. Absorbance at 652 nm increases linearly in the 0.3 to 200 ng L−1 HIF-1α concentration range, and the limit of detection is 0.2 ng L−1. The method was tested by analyzing rat serum from isoproterenol (ISO)-induced myocardial infarction. It allows HIF-1α to be directly determined in a 25 μL sample without preconcentration. The assay is not interfered by the polydispersity of exosomes released under either health and disease conditions.

Gold nanospheres were functionalized with a HIF-1α-binding aptamer via sulfydryl chemistry. Nanosized gold seed particles were then modified with the functionalized gold nanospheres, and this strongly increases the peroxidase-mimicking activity of the nanomaterial. By using the tetramethylbenzidine/H2O2 chromogenic system, the absorbance at 652 nm increases linearly in the 0.3 to 200 ng L-1 HIF-1α concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CVDs:

Cardiovascular diseases

MI:

Myocardial infarction

cTn:

Cardiac troponin

LDH:

Lactate dehydrogenase

CK-MB:

Creatine kinase MB

HIF-1α:

Hypoxia-inducible factor-1 alpha

HRP:

Horseradish peroxidase

ISEV:

International Society for Extracellular Vesicles

AuNPs:

Gold nanoparticles

LOD:

Limit of detection

NTA:

Nanoparticle tracking analysis

DLS:

Dynamic light scattering

TEM:

Transmission electron microscope

CV:

Coefficient of variation

ISO:

Isoproterenol hydrochloride

References

  1. Zaman S, Kovoor P (2014) Sudden cardiac death early after myocardial infarction pathogenesis, risk stratification, and primary prevention. Circulation 129:2426–2435

    Article  Google Scholar 

  2. Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S, Biedert S, Schaub N, Buerge C, Potocki M, Noveanu M, Breidthardt T, Twerenbold R, Winkler K, Bingisser MC (2009) Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. New Engl J Med 361:858–867

    Article  CAS  Google Scholar 

  3. Lang RM, Badano L, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf F, Foster E, Goldstein S, Kuznetsova T, Muraru D, Picard M, Rietzschel E, Rudski L, Spencer K, Tsang W, Voigt J (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J-Card Img 16:233–271

    Google Scholar 

  4. Ghotbi A, Clemmensen A, Kyhl K, Follin B, Hasbak P, Engstrom T, Ripa R, Kjaer A (2019) Rubidium-82 PET imaging is feasible in a rat myocardial infarction model. J Nucl Cardiol 26:798–809

    Article  Google Scholar 

  5. Vita T, Murphy D, Osborne M, Bajaj N, Keraliya A, Jacob S, Martinez A, Nodoushani A, Bravo P, Hainer J, Bibbo C, Steigner M, Taqueti V, Skali H, Blankstein R, Di Carli M, Dorbala S (2019) Association between nonalcoholic fatty liver disease at ct and coronary microvascular dysfunction at myocardial perfusion PET/CT. Radiology 291:329–336

    Article  Google Scholar 

  6. Duan P, Tan J, Miao Y, Zhang Q (2019) Potential role of exosomes in the pathophysiology, diagnosis, and treatment of hypoxic diseases. Am J Transl Res 11:1184–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shah R, Patel T, Freedman J (2018) Circulating extracellular vesicles in human disease. New Engl J Med 379:958–966

    Article  CAS  Google Scholar 

  8. Semenza G (2014) Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol 76:39–56

    Article  CAS  Google Scholar 

  9. Heikal L, Ghezzi P, Mengozzi M, Ferns G (2018) Assessment of HIF-1 alpha expression and release following endothelial injury in-vitro and in-vivo. Mol Med 24:22

    Article  Google Scholar 

  10. Chen H, Sun Y, Li Y, Zhao J, Cao Y (2018) Determination of hypoxia-inducible factor-1 by using a ratiometric colorimetric test based on click-mediated growth of gold nanoparticles. Microchim Acta 185:451

    Article  Google Scholar 

  11. Xuan W, Peng Y, Deng Z, Peng T, Kuai H, Li Y, He J, Jin C, Liu Y, Wang R, Tan W (2018) A basic insight into aptamer-drug conjugates (ApDCs). Biomaterials 182:216–226

    Article  CAS  Google Scholar 

  12. Lee J, So H, Jeon E, Chang H, Won K, Kim Y (2008) Aptamers as molecular recognition elements for electrical nanobiosensors. Anal Bioanal Chem 390:1023–1032

    Article  CAS  Google Scholar 

  13. Yang R, Mu W, Chen Q, Wang Q, Gao J (2018) Smart magnetic nanoaptamer: construction, subcellular distribution, and silencing HIF for cancer gene therapy. Acs Biomater Sci Eng 4:2606–2613

    Article  CAS  Google Scholar 

  14. Zhu H, Zhang L, Liu Y, Zhou Y, Wang K, Xie X, Song L, Wang D, Han C, Chen Q (2016) Aptamer-PEG-modified Fe3O4@Mn as a novel T1-and T2-dual-model MRI contrast agent targeting hypoxia-induced cancer stem cells. Sci Rep 6:12

    Article  Google Scholar 

  15. Mu W, Xiao X, Chen T, Chen Q (2016) Mn(II) silver-aptamer clusters for targeted MR imaging of tumors. J Mater Chem B 4:5284–5288

    Article  CAS  Google Scholar 

  16. Zhao T, Chen Q, Wang P, Chen Z (2014) A DNA-Ag cluster as a sensor for BODIPY isomers and HepG-2 cells. RSC Adv 4:10390–10394

    Article  CAS  Google Scholar 

  17. Zhao T, Chen Q, Zeng C, Lan Y, Cai J, Liu J, Gao J (2013) Multi-DNA-Ag nanoclusters: reassembly mechanism and sensing the change of HIF in cells. J Mater Chem B 1:4678–4683

    Article  CAS  Google Scholar 

  18. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076

    Article  CAS  Google Scholar 

  19. Inkpen M, Liu Z, Li H, Campos L, Neaton J, Venkataraman L (2019) Non-chemisorbed gold-sulfur binding prevails in self-assembled monolayers. Nat Chem 11:351–358

    Article  CAS  Google Scholar 

  20. Jadhav S (2012) Functional self-assembled monolayers (SAMs) of organic compounds on gold nanoparticles. J Mater Chem 22:5894–5899

    Article  CAS  Google Scholar 

  21. Zhao F, Zhou J, Su X, Wang Y, Yan X, Jia S, Du B (2017) A smart responsive dual aptamers-targeted bubble-generating nanosystem for cancer triplex therapy and ultrasound imaging. Small 13:1603990

    Article  Google Scholar 

  22. Farka Z, Cunderlova V, Horackova V, Pastucha M, Mikusova Z, Hlavacek A, Skladal P (2018) Prussian blue nanoparticles as a catalytic label in a Sandwich Nanozyme-linked Immunosorbent assay. Anal Chem 90:2348–2354

    Article  CAS  Google Scholar 

  23. Cunderlova V, Hlavacek A, Hornakova V, Peterek M, Nemecek D, Hampl A, Eyer L (2016) Skladal P (2016) catalytic nanocrystalline coordination polymers as an efficient peroxidase mimic for labeling and optical immunoassays. Microchim Acta 183:651–658

    Article  CAS  Google Scholar 

  24. Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao GF, Xie N, Tango A, Nie G, Liang M, Yan X (2018) Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 13:1506–1520

    Article  CAS  Google Scholar 

  25. Chen Z, Lai G, Liu S, Yu A (2018) Ultrasensitive electrochemical aptasensing of kanamycin antibiotic by enzymatic signal amplification with a horseradish peroxidase-functionalized gold nanoprobe. Sensor Actuat B-Chem 273:1762–1767

    Article  CAS  Google Scholar 

  26. Grabar K, Freeman R, Hommer M, Natan M (1995) Preparation and characterization of au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  27. Haiss W, Thanh N, Aveyard J, Fernig D (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  28. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126:11768–11769

    Article  CAS  Google Scholar 

  29. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3:22–30

    PubMed  Google Scholar 

  30. Chen ZH, Chen CQ, Huang HW, Luo F, Guo LH, Zhang L, Lin ZY, Chen GN (2018) Target-induced horseradish peroxidase deactivation for multicolor colorimetric assay of hydrogen sulfide in rat brain microdialysis. Anal Chem 90:6222–6228

    Article  CAS  Google Scholar 

  31. van der Pol E, Coumans F, Sturk A, Nieuwland R, Van Leeuwen T (2014) Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett 14:6195–6201

    Article  Google Scholar 

  32. Jain P, Mahajan U, Shinde S, Surana S (2018) Cardioprotective role of FA against isoproterenol induced cardiac toxicity. Mol Biol Rep 45:1357–1365

    Article  CAS  Google Scholar 

  33. Boulanger C, Loyer X, Rautou P, Amabile N (2017) Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 14:259–272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CAS “Light of West China” Program (No. 2018XBZG_XBQNXZ_A_005), Biological Resources Program, Chinese Academy of Sciences (KFJ-BRP-008)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Sen Qing or Pei Luo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QL., Huang, WX., Zhang, PJ. et al. Colorimetric determination of the early biomarker hypoxia-inducible factor-1 alpha (HIF-1α) in circulating exosomes by using a gold seed-coated with aptamer-functionalized Au@Au core-shell peroxidase mimic. Microchim Acta 187, 61 (2020). https://doi.org/10.1007/s00604-019-4035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4035-z

Keywords

Navigation