Skip to main content
Log in

Colorimetric determination of nine metal ions based on the de-aggregation of papain-functionalized gold nanoparticles and using three chelating agents

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric array for metal ions is described that is based on the de-aggregation of papain-capped gold nanoparticles (AuNPs) for discrimination of metal ions. The functionalized AuNPs were used as colorimetric probes, and three chelating agents (tripolyphosphate, citrate, and ethylenediamine tetraacetate were employed as the recognition receptors. In the absence of metal ions (Fe3+, Cr3+, Co2+, Mg2+, Pb2+, Ca2+, Zn2+, Ti4+, and Sn4+ were studied), the capped AuNPs are well dispersed in solution. In the presence of these ions, the metal ions bind papain and cause the AuNPs to aggregate. This causes a color change from red to purple. Different chelating agents induce different affinities between metal ions and papain. This results in distinct colorimetric response patterns. Linear discriminant analysis is used to discriminate the various metal ions on a three-dimensional spatial dispersion graph.

A colorimetric method is described for discrimination of metal ions. It is based on the chelation reaction between sensing receptors and metal ion-induced papain-functionalized AuNP deaggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnham KJ, Bush AI (2014) Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 43:6727–6749

    Article  CAS  Google Scholar 

  2. Zhou W, Saran R, Liu J (2017) Metal sensing by DNA. Chem Rev 117:8272–8325

    Article  CAS  Google Scholar 

  3. Aragay G, Pons J, Merkoci A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111:3433–3458

    Article  CAS  Google Scholar 

  4. Liu L, Lin H (2014) Paper-based colorimetric array test strip for selective and semiquantitative multi-ion analysis: simultaneous detection of Hg2+, Ag+, and Cu2+. Anal Chem 86:8829–8834

    Article  CAS  Google Scholar 

  5. Udhayakumari D, Suganya S, Velmathi S, Mubarakali D (2014) Naked eye sensing of toxic metal ions in aqueous medium using thiophene-based ligands and its application in living cells. J Mol Recognit 27:151–159

    Article  CAS  Google Scholar 

  6. Wang X, Yang Y, Dong J, Bei F, Ai S (2014) Lanthanum-functionalized gold nanoparticles for coordination-bonding recognition and colorimetric detection of methyl parathion with high sensitivity. Sensors Actuators B Chem 204:119–124

    Article  CAS  Google Scholar 

  7. Yan X, Li H, Yan Y, Su X (2015) Selective detection of parathion-methyl based on near-infrared CuInS2 quantum dots. Food Chem 173:179–184

    Article  CAS  Google Scholar 

  8. Hou J, Dong J, Zhu H, Teng X, Ai S, Mang M (2015) A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots. Biosens Bioelectron 68:20–26

    Article  CAS  Google Scholar 

  9. Mayr T, Igel C, Liebsch G, Klimant I, Wolfbeis OS (2003) Cross-reactive metal ion sensor array in a micro titer plate format. Anal Chem 75:4389–4396

    Article  CAS  Google Scholar 

  10. Zhang M, Le HN, Jiang XQ, Guo SM, Yu HJ, Ye BC (2013) A ratiometric fluorescent probe for sensitive, selective and reversible detection of copper (II) based on riboflavin-stabilized gold nanoclusters. Talanta 117:399–404

    Article  CAS  Google Scholar 

  11. Gao YX, Li X, Li YL, Li TH, Zhao YY, Wu AG (2014) A simple visual and highly selective colorimetric detection of Hg2+ based on gold nanoparticles modified by 8-hydroxyquinolines and oxalates. Chem Commun 50:6447–6450

    Article  CAS  Google Scholar 

  12. Beqa L, Singh AK, Khan SA, Senapati D, Arumugam SR, Ray PC (2011) Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. ACS Appl Mater Interfaces 3:668–673

    Article  CAS  Google Scholar 

  13. Ma YJ, Jiang L, Mei YJ, Song RB, Tian DB, Huang H (2013) Colorimetric sensing strategy for mercury(II) and melamine utilizing cysteamine-modified gold nanoparticles. Analyst 138:5338–5343

    Article  CAS  Google Scholar 

  14. Zhou Y, Huang W, He Y (2018) pH-induced silver nanoprism etching-based multichannel colorimetric sensor array for ultrasensitive discrimination of thiols. Sensors Actuators B 270:187–191

    Article  CAS  Google Scholar 

  15. Berlina AN, Zherdev AV, Dzantiev BB (2019) Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules. Microchim Acta 186:172

    Article  Google Scholar 

  16. He Y, Xu B, Li WH, Yu HL (2015) Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. J Agric Food Chem 63:2930–2934

    Article  CAS  Google Scholar 

  17. Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713

    Article  CAS  Google Scholar 

  18. Diaz de Greñu B, Moreno D, Torroba T, Berg A, Gunnars J, Nilsson T, Nyman R, Persson M, Pettersson J, Eklind I, Wästerby P (2014) Fluorescent discrimination between traces of chemical warfare agents and their mimics. J Am Chem Soc 136:4125–4128

    Article  Google Scholar 

  19. Selvakumar K, Motiei L, Margulies D (2015) Enzyme-artificial enzyme interactions as a means for discriminating among structurally similar isozymes. J Am Chem Soc 137:4892–4895

    Article  CAS  Google Scholar 

  20. Chen K, Shu Q, Schmittel M (2015) Design strategies for lab-on-a-molecule probes and orthogonal sensing. Chem Soc Rev 44:136–160

    Article  CAS  Google Scholar 

  21. Lee JS, Shin DH, Jun J, Jang J (2013) Multidimensional polypyrrole/iron oxyhydroxide hybrid nanoparticles for chemical nerve gas agent sensing application. ACS Nano 7:10139–10147

    Article  CAS  Google Scholar 

  22. Sang LJ, Wang HF (2014) Aminophenylboronic-acid-conjugated polyacrylic acid-Mn-doped ZnS quantum dot for highly sensitive discrimination of glycoproteins. Anal Chem 86:5706–5712

    Article  CAS  Google Scholar 

  23. You CC, Miranda OR, Gider B, Ghosh PS, Kim IB, Erdogan B, Krovi SA, Bunz UH, Rotello VM (2007) Detection and identification of proteins using nanoparticle-fluorescent polymer' chemical nose' sensors. Nat Nanotechnol 2:318–323

    Article  CAS  Google Scholar 

  24. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  25. Anzenbacher P, Lubal P, Bucek P, Palacios MA, Kozelkova ME (2010) A practical approach to optical cross-reactive sensor arrays. Chem Soc Rev 39:3954–3979

    Article  CAS  Google Scholar 

  26. Jing WJ, Lu YX, Yang GC, Wang FY, He LY, Liu YY (2017) Fluorescence sensor array based on amino acids-modulating quantum dots for the discrimination of metal ions. Anal Chim Acta 985:175–182

    Article  CAS  Google Scholar 

  27. Wang Z, Xu C, Lu YX, Chen XT, Yuan H, Wei GY, Ye G, Chen J (2017) Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions. Sensors Actuators B 241:1324–1330

    Article  CAS  Google Scholar 

  28. Wu YP, Liu X, Wu QH, Yi J, Zhang GL (2017) Differentiation and determination of metal ions using fluorescent sensor array based on carbon nanodots. Sensors Actuators B 246:680–685

    Article  CAS  Google Scholar 

  29. Xu W, Ren CL, Teoh CL, Peng JJ, Gadre SH, Rhee HW, Lee CLK, Chang YT (2014) An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions. Anal Chem 86:8763–8769

    Article  CAS  Google Scholar 

  30. Najafzadeh F, Ghasemi F, Hormozi-Nezhad MR (2018) Anti-aggregation of gold nanoparticles for metal ion discrimination: a promising strategy to design colorimetric sensor arrays. Sensors Actuators B 270:545–551

    Article  CAS  Google Scholar 

  31. Zhou XJ, Nie JJ, Du BY (2017) Functionalized ionic microgel sensor array for colorimetric detection and discrimination of metal ions. ACS Appl Mater Interfaces 9:20913–20921

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Scientific Research Project of Beijing Educational Committee (Grant No. KM201710028009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengbo Chen or Wei Wei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, F., Liu, Q., Chen, Z. et al. Colorimetric determination of nine metal ions based on the de-aggregation of papain-functionalized gold nanoparticles and using three chelating agents. Microchim Acta 186, 854 (2019). https://doi.org/10.1007/s00604-019-4028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4028-y

Keywords

Navigation