Skip to main content
Log in

A nanocomposite prepared from bifunctionalized ionic liquid, chitosan, graphene oxide and magnetic nanoparticles for aptamer-based assay of tetracycline by chemiluminescence

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanocomposite was prepared from a bifunctionalized ionic liquid, chitosan on magnetic nanoparticle-modified graphene oxide (IL/Chit@MGO). It was used in a chemiluminescencc (CL) assay for tetracycline. The materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray powder diffraction, nitrogen adsorption-desorption isotherm, vibrating sample magnetometry and zeta potentials. Subsequently, a tetracycline-binding aptamer (TC-Apt) acting as a recognition element, and G-quadruplex DNAzyme (G-DNAzyme) acting as a signal amplification component were modified on IL/Chit@MGO. So, the bifunctional G-DNAzyme/TC-Apt/IL/Chit@MGO was prepared. The IL/Chit@MGO is found to possess excellent loading capability for TC-Apt. This is attributed to the large specific surface and abundant charge on the surface of IL/Chit@MGO. The composite was used to construct a CL assay for tetracycline. Tetracycline binds to TC-Apt and causes the release of the G-DNAzyme. The latter catalyzes the CL of luminol-H2O2 CL system at pH 7.4. Under optimized conditions, the blue CL at the emission wavelength of 425 nm increases linearly in the 0.16 pM to 2.0 nM concentration range, and the detection limit is 21 fM (at 3σ). The assay is selective, reproducible and stable. The assay was applied to tetracycline detection in practical samples. The apparent recoveries are 98.0% to 101.3% for the milk sample and 97.0% to 102.2% for the water sample.

G-quadruplex DNAzyme (G-DNAzyme) and tetracycline aptamer (TC-Apt) bifunctionalized ionic liquid/chitosan@magnetic graphene oxide (IL/Chit@MGO) was prepared. The nanocomposite was used to construct a chemiluminescence (CL) assay for tetracycline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Petković H, Lukežič T, Šušković J (2017) Biosynthesis of oxytetracycline by streptomyces rimosus: past, present and future directions in the development of tetracycline antibiotics. Food Technol Biotechnol 55(1):3–13

    Article  PubMed  PubMed Central  Google Scholar 

  2. Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11(3):209–227

    Article  CAS  Google Scholar 

  3. Gao P, Ding Y, Li H, Xagoraraki I (2012) Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes. Chemosphere 88(1):17–24

    Article  CAS  PubMed  Google Scholar 

  4. Liu X, Huang D, Lai C, Zeng G, Qin L, Zhang C, Yi H, Li B, Deng R, Liu S, Zhang Y (2018) Recent advances in sensors for tetracycline antibiotics and their applications. Trends Anal Chem 109:260–274

    Article  CAS  Google Scholar 

  5. Xu J, Xie S, Li C, Xu L (2017) Detection of tetracycline antibiotics by hierarchically nanoporous Pd-HSiO1.5/Ni-co electrochemical biosensor. J Biobased Mater Bioenergy 11(5):477–482

    Article  CAS  Google Scholar 

  6. Li H, Li J, Qiao Y, Fang H, Fan D, Wang W (2017) Nano-gold plasmon coupled with dual-function quercetin for enhanced photoelectrochemical aptasensor of tetracycline. Sensors Actuators B 243:1027–1033

    Article  CAS  Google Scholar 

  7. Shen L, Chen J, Li N, He P, Li Z (2014) Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles. Anal Chim Acta 839:83–90

    Article  CAS  PubMed  Google Scholar 

  8. Sheng W, Chang Q, Shi Y, Duan W, Zhang Y, Wang S (2018) Visual and fluorometric lateral flow immunoassay combined with a dual-functional test mode for rapid determination of tetracycline antibiotics. Microchim Acta 185(9):404

    Article  Google Scholar 

  9. Roda A, Guardigli M (2012) Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem 402(1):69–76

    Article  CAS  PubMed  Google Scholar 

  10. Iranifam M (2014) Analytical applications of chemiluminescence methods for cancer detection and therapy. Trends Anal Chem 59:156–183

    Article  CAS  Google Scholar 

  11. Timofeeva II, Vakh CS, Bulatov AV, Worsfold PJ (2018) Flow analysis with chemiluminescence detection: recent advances and applications. Talanta 179:246–270

    Article  CAS  PubMed  Google Scholar 

  12. Xia W, Zhang H, Wang G, Liu J, Wang J (2019) A molecularly imprinted polymer based chemiluminescence array sensor for one-step determination of phenothiazines and benzodiazepines in pig urine. Luminescence 34(1):98–105

    CAS  PubMed  Google Scholar 

  13. Chen L, Zhang Z, Zhang P, Zhang X, Fu A (2011) An ultra-sensitive chemiluminescence immunosensor of carcinoembryonic antigen using HRP-functionalized mesoporous silica nanoparticles as labels. Sensors Actuators B 155(2):557–561

    Article  CAS  Google Scholar 

  14. Mun H, Jo E-J, Li T, Joung H-A, Hong D-G, Shim W-B, Jung C, Kim M-G (2014) Homogeneous assay of target molecules based on chemiluminescence resonance energy transfer (CRET) using DNAzyme-linked aptamers. Biosens Bioelectron 58:308–313

    Article  CAS  PubMed  Google Scholar 

  15. Qin P, Luo F, Liu M, Zhang X (2018) Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Inf Secur 77(2):83–98

    Google Scholar 

  16. Zhao Y, Cui L, Sun Y, Zheng F, Ke W (2019) Ag/CdO NP-engineered magnetic electrochemical aptasensor for prostatic specific antigen detection. ACS Appl Mater Interfaces 11(3):3474–3481

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Han J, Li Y, Du J (2018) A sensitive and recyclable fluorescence aptasensor for detection and extraction of platelet-derived growth factor BB. Sensors Actuators B 277:179–185

    Article  CAS  Google Scholar 

  18. Benvidi A, Tezerjani MD, Moshtaghiun SM, Mazloum-Ardakani M (2016) An aptasensor for tetracycline using a glassy carbon modified with nanosheets of graphene oxide. Microchim Acta 183:1797–1804

    Article  CAS  Google Scholar 

  19. Lin Y, Dai Y, Sun Y, Ding C, Sun W, Zhu X, Liu H, Luo C (2018) A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates. Talanta 182:116–124

    Article  CAS  PubMed  Google Scholar 

  20. Rad AO, Azadbakht A (2019) An aptamer embedded in a molecularly imprinted polymer for impedimetric determination of tetracycline. Microchim Acta 186(2):56

    Article  Google Scholar 

  21. Yang B, Li J, Deng H, Zhang L (2016) Progress of mimetic enzymes and their applications in chemical sensors. Crit Rev Anal Chem 46:469–481

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Zhu Y, Binyam A, Liu M, Wu Y, Li F (2016) Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens Bioelectron 86:432–438

    Article  CAS  PubMed  Google Scholar 

  23. Xu N, Lei J, Wang Q, Yang Q, Ju H (2016) Dendritic DNA-porphyrin as mimetic enzyme for amplified fluorescent detection of DNA. Talanta 150:661–665

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Xu M, Guo Y, Tu K, Wu W, Wang J, Tong X, Wu W, Qi L, Shi D (2017) Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle. Nanotechnology 28(2):025101

    Article  PubMed  Google Scholar 

  25. Wang C, Qian J, Wang K, Wang K, Liu Q, Dong X, Wang C, Huang X (2015) Magnetic-fluorescent-targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A. Biosens Bioelectron 68:783–790

    Article  CAS  PubMed  Google Scholar 

  26. Lim WQ, Phua SZF, Xu HV, Sreejithb S, Zhao Y (2016) Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy. Nanoscale 8:12510–12519

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Q, Tang D (2018) Graphene oxide-gated mesoporous silica nanocontainers using aptamers for arsenite detection with glucometer readout. J Mater Chem B 6:6585–6591

    Article  CAS  PubMed  Google Scholar 

  28. Cao J-T, Yang J-J, Zhao L-Z, Wang Y-L, Wang H, Liu Y-M, Ma S-H (2018) Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen. Biosens Bioelectron 99:92–98

    Article  CAS  PubMed  Google Scholar 

  29. Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim Acta 184(1):1–44

    Article  CAS  Google Scholar 

  30. Bayraç AT, Donmez SI (2018) Selection of DNA aptamers to Streptococcus pneumonia and fabrication of graphene oxide based fluorescent assay. Anal Biochem 556:91–98

    Article  PubMed  Google Scholar 

  31. Lai P-X, Mao J-Y, Unnikrishnan B, Chu H-W, Wu C-W, Chang H-T, Huang C-C (2018) Self-assembled, bivalent aptamers on graphene oxide as an efficient anticoagulant. Biomater Sci 6:1882–1891

    Article  CAS  PubMed  Google Scholar 

  32. Sing KSW, Verett DH, RAW H, Moscou L, RA PI, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  33. Sun Y, Han R, Dai Y, Zhu X, Liu H, Gao D, Luo C, Wang X, Wei Q (2019) Highly selective and sensitive streptomycin chemiluminescence sensor based on aptamer and G-quadruplex DNAzyme modified three-dimensional graphene composite. Sensors Actuators B. https://doi.org/10.1016/j.snb.2019.127122

    Article  Google Scholar 

  34. Liu B, Zhang B, Chen G, Tang D (2014) Biotin-avidin-conjugated metal sulfide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol. Microchim Acta 181:257–262

    Article  CAS  Google Scholar 

  35. Liu H, Chen L, Ding J (2017) A core-shell magnetic metal organic framework of type Fe3O4@ZIF-8 for the extraction of tetracycline antibiotics from water samples followed by ultra-HPLC-MS analysis. Microchim Acta 184:4091–4098

    Article  CAS  Google Scholar 

  36. Tang Y, Liu P, Xu J, Li L, Yang L, Liu X, Liu S, Zhu Y (2018) Electrochemical aptasensor based on a novel flower-like TiO2 nanocomposite for the detection of tetracycline. Sensors Actuators B 258:906–912

    Article  CAS  Google Scholar 

  37. Yang Q, Peng H, Li J, Li Y, Xiong H, Chen L (2017) Label-free colorimetric detection of tetracycline using analyte-responsive inverse-opal hydrogels based on molecular imprinting technology. New J Chem 41:10174–10180

    Article  CAS  Google Scholar 

  38. Zhang X, Zhang R, Yang A, Wang Q, Kong R, Qu F (2017) Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@au nanocomposite. Microchim Acta 184:4367–4374

    Article  CAS  Google Scholar 

  39. Yang J, Lin Z, Nur A-Z, Lu Y, Wu M, Zeng J, Chen X, Huang Z (2018) Detection of trace tetracycline in fish via synchronous fluorescence quenching with carbon quantum dots coated with molecularly imprinted silica. Spectrochim Acta A 190:450–456

    Article  CAS  Google Scholar 

  40. Liu ML, Chen BB, Yang T, Wang J, Liu XD, Huang CZ (2017) One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline. Methods Appl Fluoresc 5:015003

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation for Young Scientists of China (No. 21605094), Youth Science fund of Shandong Academy of Sciences (No. 2017QN006), Shandong Province Natural Science Institute Joint Fund (No. ZR2015YL006), Shandong Provincial Natural Science Foundation of China (No. ZR2016BM01) and Horizontal Scientific Research Project of China (No. W15077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueying Wang or Chuannan Luo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Dai, Y., Zhu, X. et al. A nanocomposite prepared from bifunctionalized ionic liquid, chitosan, graphene oxide and magnetic nanoparticles for aptamer-based assay of tetracycline by chemiluminescence. Microchim Acta 187, 63 (2020). https://doi.org/10.1007/s00604-019-4012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4012-6

Keywords

Navigation