Skip to main content
Log in

Electrospun core-shell nanofibers as an adsorbent for on-line micro-solid phase extraction of monohydroxy derivatives of polycyclic aromatic hydrocarbons from human urine, and their quantitation by LC-MS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method is described for automatted on-line micro-solid phase extraction using polydopamine-modified polystyrene/silica electrospun nanofibers as an adsorbent for monohydroxy metabolites of polycyclic aromatic hydrocarbons (OH-PAHs). They were then quantified by liquid chromatography-mass spectrometry. The sorbent has a network structure, high porosity, stability, hydrophilicity and good extraction capacity. Under optimal experimental conditions, the method has (a) wide linear ranges (0.03–25 ng·mL−1 for 3-hydroxyphenanthrene and 1-hydroxypyrene; and 0.05–25 ng·mL−1 for 2-naphthol), (b) good precision (with relative standard deviations from 2.0 to 12.4%), (c) high enrichment factors (24–112), (d) low limits of detection (2–21 pg·mL−1), and (e) acceptable recoveries from spiked samples (79.1 to 108%). The method was successfully applied for the analysis of trace OH-PAHs in urine.

Schematic illustration of online micro-solid phase extraction using polydopamine-modified polystyrene/silica electrospun nanofibers as adsorbent for the enrichment and determination of monohydroxy metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) prior to LC-MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Recio-Vega R, Olivas-Calderon E, Michel-Ramirez G, Martinez-Salinas RI, Gallegos-Arreola MP, Ocampo-Gomez GL, Perez-Morales R (2018) Associations between sperm quality, DNA damage, and CYP1A1, GSTT1 and GSTM1 polymorphisms with 1-hydroxypyrene urinary levels in men occupationally exposed to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health 91(6):725–734

    Article  CAS  Google Scholar 

  2. Chen D, Xu H (2019) Simultaneous HPLC-MS determination of 8-hydroxy-2′-deoxyguanosine, 3-hydroxyphenanthrene and 1-hydroxypyrene after online in-tube solid phase microextraction using a graphene oxide/poly(3,4-ethylenedioxythiophene)/polypyrrole composite. Microchim Acta 186:300

    Article  Google Scholar 

  3. Hoseini M, Nabizadeh R, Delgado-Saborit JM, Rafiee A, Yaghmaeian K, Parmy S, Faridi S, Hassanvand MS, Yunesian M, Naddafi K (2018) Environmental and lifestyle factors affecting exposure to polycyclic aromatic hydrocarbons in the general population in a middle eastern area. Environ Pollut 240:781–792

    Article  CAS  Google Scholar 

  4. Nian Q, Wang X, Wang M, Zou G (2019) A hybrid material composed of graphitic carbon nitride and magnetite (Fe3O4) for magnetic solid-phase extraction of trace levels of hydroxylated polycyclic aromatic hydrocarbons. Microchim Acta 186:497

    Article  Google Scholar 

  5. Bortey-Sam N, Ikenaka Y, Akoto O, Nakayama SMM, Asante KA, Baidoo E, Obirikorang C, Saengtienchai A, Isoda N, Nimako C, Mizukawa H, Ishizuka M (2017) Oxidative stress and respiratory symptoms due to human exposure to polycyclic aromatic hydrocarbons (PAHs) in Kumasi, Ghana. Environ Pollut 228:311–320

    Article  CAS  Google Scholar 

  6. Huang ZY, Wu CC, Bao LJ, Wang XP, Muir D, Zeng EY (2018) Characteristics and potential health risk of rural Tibetans' exposure to polycyclic aromatic hydrocarbons during summer period. Environ Int 118:70–77

    Article  CAS  Google Scholar 

  7. Lintelmann J, Wu X, Kuhn E, Ritter S, Schmidt C, Zimmermann R (2018) Detection of monohydroxylated polycyclic aromatic hydrocarbons in urine and particulate matter using LC separations coupled with integrated SPE and fluorescence detection or coupled with high-resolution time-of-flight mass spectrometry. Biomed Chromatogr 32(5):e4183

    Article  Google Scholar 

  8. Hennion MC (1999) Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J Chromatogr A 856(1–2):3–54

    Article  CAS  Google Scholar 

  9. Rossi DZ, Zhang N (2000) Automating solid-phase extraction: current aspecs and future prospekts. J Chromatogr A 885(1–2):97–113

    Article  CAS  Google Scholar 

  10. Campone L, Piccinelli AL, Celano R, Pagano I, Russo M, Rastrelli L (2016) Rapid and automated analysis of aflatoxin M1 in milk and dairy products by online solid phase extraction coupled to ultra-high-pressure-liquid-chromatography tandem mass spectrometry. J Chromatogr A 1428:212–219

    Article  CAS  Google Scholar 

  11. Wang M, Ma P, Xi X, Liu L, Wen Y, Liu K, Sun L, Lu Y, Yin Z (2016) Online solid phase extraction and liquid chromatography-mass spectrometric determination of nucleoside drugs in plasma. Talanta 161:278–287

    Article  CAS  Google Scholar 

  12. Yao B, Lian L, Pang W, Yin D, Chan SA, Song W (2016) Determination of illicit drugs in aqueous environmental samples by online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. Chemosphere 160:208–215

    Article  CAS  Google Scholar 

  13. Basheer C, Alnedhary AA, Rao BS, Valliyaveettil S, Lee HK (2006) Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal Chem 78(8):2853–2858

    Article  CAS  Google Scholar 

  14. Zhang C, Li G, Zhang Z (2015) A hydrazone covalent organic polymer based micro-solid phase extraction for online analysis of trace Sudan dyes in food samples. J Chromatogr A 1419:1–9

    Article  CAS  Google Scholar 

  15. Zhang Q, Li G, Xiao X (2015) Acrylamide-modified graphene for online micro-solid-phase extraction coupled to high-performance liquid chromatography for sensitive analysis of heterocyclic amines in food samples. Talanta 131:127–135

    Article  CAS  Google Scholar 

  16. Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11(8):1165–1188

    Article  CAS  Google Scholar 

  17. Liu HC, Mukherjee S, Liu Y, Ramakrishna S (2018) Recent studies on electrospinning preparation of patterned, core-shell, and aligned scaffolds. J Appl Polym Sci 135(31):46570

    Article  Google Scholar 

  18. Reyes-Gallardo EM, Lucena R, Cardenas S (2016) Electrospun nanofibers as sorptive phases in microextraction. Trac-Trends In Analytical Chemistry 84:3–11

    Article  CAS  Google Scholar 

  19. Saraji M, Jafari MT, Mossaddegh M (2016) Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography-corona discharge ion mobility spectrometric detection. J Chromatogr A 1429:30–39

    Article  CAS  Google Scholar 

  20. Zhou Y, Quan G, Wu Q, Zhang X, Niu B, Wu B, Huang Y, Pan X, Wu C (2018) Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B 8(2):165–177

    Article  Google Scholar 

  21. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534

    Article  CAS  Google Scholar 

  22. Ávila AF, AMd O, GRDBS L, Munhoz VC, MCG S, Santos PF, Triplett M (2013) A Nano-modified superhydrophobic membrane. Mater Res 16(3):609–613

    Article  Google Scholar 

  23. Lin J, Cai Y, Wang X, Ding B, Yu J, Wang M (2011) Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale 3(3):1258–1262

    Article  CAS  Google Scholar 

  24. Kong J, Shahabadi S, Lu X (2015) Integration of inorganic nanostructures with Polydopamine-derived carbon: tunable morphology and versatile applications. Nanoscale 8(4):1770-1788 

    Article  CAS  Google Scholar 

  25. Li H, Jia Y, Peng H, Li J (2018) Recent developments in dopamine-based materials for cancer diagnosis and therapy. Adv Colloid Interf Sci 252:1–20

    Article  CAS  Google Scholar 

  26. Qiu WZ, Yang HC, Xu ZK (2018) Dopamine-assisted co-deposition: an emerging and promising strategy for surface modification. Adv Colloid Interf Sci 256:111–125

    Article  CAS  Google Scholar 

  27. Deng Z, Shang B, Peng B (2018) Polydopamine based colloidal materials: synthesis and applications. Chem Rec 18(4):410–432

    Article  CAS  Google Scholar 

  28. Wang SL, Xu H (2016) Inorganic-organic hybrid coating material for the onlinein-tube solid-phase microextraction of monohydroxy polycyclic aromatichydrocarbons in urine. J Sep Sci 39:4610–4620

    Article  CAS  Google Scholar 

  29. Wu Q, Wu D, Guan Y (2013) Fast equilibrium micro-extraction from biological fluids with biocompatible core-sheath electrospun nanofibers. Anal Chem 85(12):5924–5932

    Article  CAS  Google Scholar 

  30. Wu Q, Wu D, Guan Y (2013) In vivo fast equilibrium microextraction by stable and biocompatible nanofiber membrane sandwiched in microfluidic device. Anal Chem 85(23):11524–11531

    Article  CAS  Google Scholar 

  31. Benedetti B, Di Carro M, Magi E (2019) Multivariate optimization of an extraction procedure based on magnetic molecular imprinted polymer for the determination of polycyclic aromatic hydrocarbons in sea water. Microchem J 145:1199–1206

    Article  CAS  Google Scholar 

  32. Gutierrez-Serpa A, Napolitano-Tabares PI, Pino V, Jimenez-Moreno F, Jimenez-Abizanda AI (2018) Silver nanoparticles supported onto a stainless steel wire for direct-immersion solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by GC-FID. Microchim Acta 185(7):341-350

  33. Al-Rifai A, Aqel A, Wahibi LA, ZA AL, Badjah-Hadj-Ahmed AY (2018) Carbon nanotube-based benzyl polymethacrylate composite monolith as a solid phase extraction adsorbent and a stationary phase material for simultaneous extraction and analysis of polycyclic aromatic hydrocarbon in water. J Chromatogr A 1535:17–26

    Article  CAS  Google Scholar 

  34. Zhang H, Xu H (2017) Electrospun nanofibers-based online micro-solid phase extraction for the determination of monohydroxy polycyclic aromatic hydrocarbons in human urine. J Chromatogr A 1521:27–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundation of China (No. 21675058), Hubei Province Natural Science Fund Project outstanding youth project (No. 2017CFA075), the Fundamental Research Funds for the Central Universities (No. CCNU18TS006), International Joint Research Center for Intelligent Biosensing Technology and Health and the 111 Project B17019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Xu, H. Electrospun core-shell nanofibers as an adsorbent for on-line micro-solid phase extraction of monohydroxy derivatives of polycyclic aromatic hydrocarbons from human urine, and their quantitation by LC-MS. Microchim Acta 187, 57 (2020). https://doi.org/10.1007/s00604-019-4007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4007-3

Keywords

Navigation