Skip to main content
Log in

Colorimetric determination of the activities of tyrosinase and catalase via substrate-triggered decomposition of MnO2 nanosheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe novel colorimetric assays for tyrosinase (TYR) and catalase (CAT) based on the substrate-triggered decomposition of MnO2 nanosheets (NSs). The MnO2 NSs can act as oxidase mimics that catalyze the oxidation of the substrate tetramethylbenzidine (TMB) to form a blue dye with an absorption maximum at 652 nm. The oxidase-mimicking activity of the MnO2 NSs is inhibited by dopamine (DA)/hydrogen peroxide (H2O2) due to their decomposition of the MnO2 NSs. TYR catalyzes the oxidation of DA while CAT can decompose H2O2 into water and oxygen. Therefore, the oxidase-mimicking activity of MnO2 NSs is restored in the presence of both enzymes and their substrates. Based on the competitive consumption of substrates between enzymes and MnO2 NSs, a colorimetric method for determination of enzyme activity and its substrate is developed. The detection limits for TYR and CAT are 6 mU·mL−1 and 33 mU·mL−1, respectively.

A colorimetric method for monitoring enzyme activity and its substrate is described. It is based on the substrate-inhibited oxidase-mimicking activity of MnO2 nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li S, Mao LY, Tian YP, Wang J, Zhou ND (2012) Spectrophotometric detection of tyrosinase activity based on boronic acid-functionalized gold nanoparticles. Analyst 137:823–825

    Article  CAS  Google Scholar 

  2. Sharma AK, Pandey S, Nerthigan Y, Swaminathan N, Wu HF (2018) Aggregation of cysteamine-capped gold nanoparticles in presence of ATP as an analytical tool for rapid detection of creatine kinase (CK-MM). Anal Chim Acta 1024:161–168

    Article  CAS  Google Scholar 

  3. Kim GB, Kim KH, Park YH, Ko S, Kim YP (2013) Colorimetric assay of matrix metalloproteinase activity based on metal-induced self-assembly of carboxy gold nanoparticles. Biosens Bioeletron 41:833–839

    Article  CAS  Google Scholar 

  4. Baron R, Zayats M, Willner I (2005) Dopamine-, l-DOPA-, adrenaline-, and noradrenaline-induced growth of au nanoparticles: assays for the detection of neurotransmitters and tyrosinase activity. Anal Chem 77:1566–1571

    Article  CAS  Google Scholar 

  5. Shen L, Wang C, Chen J (2017) Photometric determination of the activity of cellulase and xylanase via measurement of formation of gold nanoparticles. Microchim Acta 184:163–168

    Article  CAS  Google Scholar 

  6. Wei H, Chen CG, Han BY, Wang EK (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80:7051–7055

    Article  CAS  Google Scholar 

  7. Gao J, Jia MN, Xu YY, Zheng JM, Shao N, Zhao MP (2018) Prereduction-promoted enhanced growth of silver nanoparticles for ultrasensitive colorimetric detection of alkaline phosphatase and carbohydrate antigen 125. Talanta 189:129–136

    Article  CAS  Google Scholar 

  8. Liu BW, Huang PC, Li JF, Wu FY (2017) Colorimetric detection of tyronsinase during the synthesis of kojic acid/silver nanoparticles under illumination. Sensor Actuator B 251:836–841

    Article  CAS  Google Scholar 

  9. Xie JX, Zhang XD, Wang H, Zheng HZ, Huang YM (2012) Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC Trends Anal Chem 39:114–129

    Article  CAS  Google Scholar 

  10. Zheng AX, Cong ZX, Wang JR, Li J, Yang HH, Chen GN (2013) Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosens Bioelectron 49:519–524

    Article  CAS  Google Scholar 

  11. Liu YH, Ren JS, Qu XG (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105

    Article  Google Scholar 

  12. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  13. Liu Y, Wu HH, Chong Y, Wamer WG, Xia QS, Cai LN, Nie ZH, Fu PP, Yin JJ (2015) Platinum nanoparticles: efficient and stable catechol oxidase mimetics. ACS Appl Mater Interfaces 7:19709–19717

    Article  CAS  Google Scholar 

  14. Jv Y, Li BX, Cao R (2010) Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46:8017–8019

    Article  Google Scholar 

  15. Shi WN, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, Huang YM (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697

    Article  CAS  Google Scholar 

  16. Zhu SY, Zhao EN, You JM, Xu GB, Wang H (2015) Carboxylic-group-functionalized single-walled carbon nanohorns as perxodiase mimetics and their application to glucose detection. Analyst 140:6398–6403

    Article  CAS  Google Scholar 

  17. Andre R, Natalio F, Humanes M, Leppin J, Heinze K, Wever R, Schroder HC, Muller WE, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509

    Article  CAS  Google Scholar 

  18. Yin JF, Cao HQ, Lu YX (2012) Self-assembly into magnetic Co3O4 complex nanostructures as peroxidase. J Mater Chem 22:527–534

    Article  CAS  Google Scholar 

  19. Ai LH, Li LL, Zhang CH, Fu J, Jiang J (2013) MIL-53(Fe): a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem Eur J 19:15105–15108

    Article  CAS  Google Scholar 

  20. Xie JX, Cao HY, Jiang H, Chen YJ, Shi WB, Zheng HZ, Huang YM (2013) Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Anal Chim Acta 796:92–100

    Article  CAS  Google Scholar 

  21. Zhai WY, Wang CX, Yu P, Wang YX, Mao LQ (2014) Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86(24):12206–12213

    Article  CAS  Google Scholar 

  22. Liu J, Meng LJ, Fei ZF, Dyson PJ, Jing XA, Liu X (2017) MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens Bioelectron 90:69–74

    Article  CAS  Google Scholar 

  23. Deng RR, Xie XJ, Vendrell M, Chang YT, Liu XG (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133(50):20168–20171

    Article  CAS  Google Scholar 

  24. Yan GW, Zhang Y, Di WH (2018) An enzymatic reaction mediated glucose sensor activated by MnO2 nanosheets acting as an oxidant and catalyst. Analyst 143:2915–2922

    Article  CAS  Google Scholar 

  25. Tian FY, Zhou J, Jiao BN, He Y (2019) A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin a. Nanoscale 11(19):9547–9555

    Article  CAS  Google Scholar 

  26. Gan Y, Hu N, He CJ, Zhou SQ, Tu JW, Liang T, Pan YX, Kirsanov D, Legin A, Wan H, Wang P (2019) MnO2 nanosheets as the biomimetic oxidase for rapid and sensitive oxalate detection combining with bionic E-eye. Biosens Bioelectron 130:254–261

    Article  CAS  Google Scholar 

  27. He LY, Lu YX, Wang FY, Jing WJ, Chen Y, Liu YY (2018) Colorimetric sensing of silver ions based on glutathione-mediated MnO2 nanosheets. Sensor Actuat B 254:468–474

    Article  CAS  Google Scholar 

  28. Song H, Wang YH, Wang GQ, Wei HY, Luo SZ (2017) Ultrathin two-dimensional MnO2 nanosheet as a stable coreactant of 3,3′,5,5′-tetramethylbenzidine chromogenic substrate for visual and colorimetric detection of iron(II) ion. Microchim Acta 184:3399–3404

    Article  CAS  Google Scholar 

  29. Yan X, Song Y, Wu XL, Zhu CZ, Su XG, Du D, Lin YH (2017) Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 9(6):2317–2323

    Article  CAS  Google Scholar 

  30. Zhu SY, Lei CH, Sun J, Zhao XE, Wang X, Yan XL, Liu W, Wang H (2019) Probing NAD+/NADH-dependent biocatalytic transformations based on oxidase mimics of MnO2. Sensor Actuat B 282:896–903

    Article  CAS  Google Scholar 

  31. Kong XJ, Wu S, Chen TT, Yu RQ, Chu X (2016) MnO2-induced synthesis of fluorescent polydopamine nanoparticles for reduced glutathione sensing in human whole blood. Nanoscale 8:15604–15610

    Article  CAS  Google Scholar 

  32. Ghavamipour F, Sajedi RH, Khajeh K (2018) A chemiluminescence-based catalase assay using H2O2-sensitive CdTe quantum dots. Microchim Acta 185:376

    Article  Google Scholar 

  33. Zhao G, Li J, Jiang L, Dong H, Wang X, Hu W (2012) Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudo supercapacitors. Chem Sci 3:433–437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is kindly supported by the National Natural Science Foundation of China (Nos. 21405094, 21775088, and 81403051), the Natural Science Foundation of Qinghai Province of China (2016-ZJ-955), and the Development Project of Qinghai Key Laboratory (No. 2017-ZJ-Y10), and the Student Research Training Program of Qufu Normal University (2018A055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyun Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.35 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XE., Zuo, YN., Qu, X. et al. Colorimetric determination of the activities of tyrosinase and catalase via substrate-triggered decomposition of MnO2 nanosheets. Microchim Acta 186, 848 (2019). https://doi.org/10.1007/s00604-019-3995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3995-3

Keywords

Navigation