Skip to main content

Advertisement

Log in

Switchable DNA tweezer and G-quadruplex nanostructures for ultrasensitive voltammetric determination of the K-ras gene fragment

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Voltammetric detection of the K-ras gene fragment was accomplished through the combined application of (a) a switchable DNA nanostructure, (b) the use of hairpin probe and exonuclease III (Exo III)-assisted signal amplification, (c) a split G-quadruplex, and (d) by exploiting the redox activity of DNAzyme. Three assistant oligonucleotides were designed to construct a DNA tweezer on a gold electrode. It is in “open state” in the absence of K-ras DNA. Then, a hairpin probe was introduced, whose stem-loop structure can be opened through hybridization with the K-ras DNA. Exo III is added which hydrolyzes the complementary region of the hairpin sequence to release a single-stranded rest fragment. The ssDNA hybridizes with the DNA tweezer on the electrode which thereby is switched to the “closed state”. This leads to the formation of G-quadruplex due to the shortened distance of the split G-quadruplex-forming sequences in the tweezer. The voltammetric signal of the G-quadruplex-hemin complex, with a peak near −0.3 V vs. Ag/AgCl, is used as the signal output. Under the optimal conditions, the current response in differential pulse voltammetry (DPV) increases linearly with the concentration of K-ras DNA in the range of 0.01–1000 pM, and the detection limit is 2.4 fM. The assay can clearly discriminate K-ras DNA from a single-base mutation. The method has excellent selectivity and was applied to the determination of K-ras DNA in (spiked) serum samples.

Schematic representation of a method for the determination of the K-ras gene fragment through a combination of switchable DNA tweezer, split G-quadruplex, and exonuclease III (ExoIII)-assisted target recycling signal amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang G, Tang Z, Wang W, Wu H, Maham A, Lin Y (2010) Hairpin DNA switch for ultrasensitive spectrophotometric detection of DNA hybridization based on gold nanoparticles and enzyme signal amplification. Anal Chem 82:6440–6446. https://doi.org/10.1021/ac1006238

    Article  CAS  PubMed  Google Scholar 

  2. Liu Z, Zhang W, Zhu S, Zhang L, Hu L, Parveen S, Xu G (2011) Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification. Biosens Bioelectron 29:215–218. https://doi.org/10.1016/j.bios.2011.07.076

    Article  CAS  PubMed  Google Scholar 

  3. Jing Z, Ding Y, Liu X, Wang L, Jiang W (2014) Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation. Biosens Bioelectron 59:276–281. https://doi.org/10.1016/j.bios.2014.03.051

    Article  CAS  Google Scholar 

  4. Wei W, Ni Q, Pu Y, Yin L, Liu S (2014) Electrochemical biosensor for DNA damage detection based on exonuclease III digestions. J Electroanal Chem 714:25–29. https://doi.org/10.1016/j.jelechem.2013.12.018

    Article  CAS  Google Scholar 

  5. Wang H, Ma R, Sun F, Jia L, Zhang W, Shang L, Xue Q, Jia W, Wang H (2018) A versatile label-free electrochemical biosensor for circulating tumor DNA based on dual enzyme assisted multiple amplification strategy. Biosens Bioelectron 122:224–230. https://doi.org/10.1016/j.bios.2018.09.028

    Article  CAS  PubMed  Google Scholar 

  6. Lei G, Sun X, Hong Q, Li F (2017) Ratiometric NanoCluster Beacon: a label-free and sensitive fluorescent DNA detection platform. ACS Appl Mater Interf 9:13102–13110. https://doi.org/10.1021/acsami.7b03198

    Article  CAS  Google Scholar 

  7. Ge L, Wang W, Li F (2017) Electro-grafted electrode with graphene-oxide-like DNA affinity for ratiometric homogeneous electrochemical biosensing of microRNA. Anal Chem 89:11560–11567. https://doi.org/10.1021/acs.analchem.7b02896

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Miao X, Ling L (2015) Triplex DNA: a new platform for polymerase chain reaction – based biosensor. Sci Rep 5:13010. https://doi.org/10.1038/srep13010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Q, Bian Z, Chen M, Hua X, Yao C, Xia H, Kuang H, Zhang X, Huang J, Cai G (2009) Real-time monitoring of the strand displacement amplification (SDA) of human cytomegalovirus by a new SDA-piezoelectric DNA sensor system. Biosens Bioelectron 24:3412–3418. https://doi.org/10.1016/j.bios.2009.06.012

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Wang L, Luo F, Qiu B, Guo L, Weng Z, Lin Z, Chen G (2017) An electrochemiluminescence biosensor for Kras mutations based on locked nucleic acid functionalized DNA walkers and hyperbranched rolling circle amplification. Chem Comm 53:2910–2913. https://doi.org/10.1039/c7cc00009j

    Article  CAS  PubMed  Google Scholar 

  11. Sun X, Chen H, Wang S, Zhang Y, Tian Y, Zhou N (2018) Electrochemical detection of sequence-specific DNA based on formation of G-quadruplex-hemin through continuous hybridization chain reaction. Anal Chim Acta 2012:121–128. https://doi.org/10.1016/j.aca.2018.02.076

    Article  CAS  Google Scholar 

  12. Hou T, Li W, Liu X, Li F (2015) Label-free and enzyme-free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: a facile, sensitive, and highly specific microRNA assay. Anal Chem 87:11368–11374. https://doi.org/10.1021/acs.analchem.5b02790

    Article  CAS  PubMed  Google Scholar 

  13. Li S, Chen A, Chai Y, Yuan R, Zhuo Y (2016) Electrochemiluminescence aptasensor based on cascading amplification of nicking endonuclease-assisted target recycling and rolling circle amplifications for mucin 1 detection. Electrochim Acta 212:767–774. https://doi.org/10.1016/j.electacta.2016.07.074

    Article  CAS  Google Scholar 

  14. Zhou W, Gong X, Xiang X, Yuan R, Chai Y (2014) Quadratic recycling amplification for label-free and sensitive visual detection of HIV DNA. Biosens Bioelectron 55:220–224. https://doi.org/10.1016/j.bios.2013.12.021

    Article  CAS  PubMed  Google Scholar 

  15. Wu H, Zhang K, Liu Y, Wang H, Wu J, Zhu F, Zou P (2015) Binding-induced and label-free colorimetric method for protein detection based on autonomous assembly of gemin/G-quadruplex DNAzyme amplification strategy. Biosens Bioelectron 64:572–578. https://doi.org/10.1016/j.bios.2014.09.096

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Carter JD, Labean TH (2010) Nanofabrication by DNA self-assembly. Mater Today 12:24–32. https://doi.org/10.1016/S1369-7021(09)70157-9

    Article  Google Scholar 

  17. Jonathan B, Turberfield AJ (2007) DNA nanomachines. Nature Nanotech 2:275–284. https://doi.org/10.1038/nnano.2007.104

    Article  CAS  Google Scholar 

  18. Liu M, Fu J, Hejesen C, Yang Y, Woodbury N, Gothelf K, Liu Y, Yan H (2013) A DNA tweezer-actuated enzyme nanoreactor. Nat Commun 4:2127. https://doi.org/10.1038/ncomms3127

    Article  CAS  PubMed  Google Scholar 

  19. Gu H, Chao J, Xiao S, Seeman N (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–205. https://doi.org/10.1038/nature09026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kou B, Chai Y, Yuan Y, Yuan R (2018) Dynamical regulation of enzyme cascade amplification by a regenerated DNA nanotweezer for ultrasensitive electrochemical DNA detection. Anal Chem 90:10701–11076. https://doi.org/10.1021/acs.analchem.8b00477

    Article  CAS  PubMed  Google Scholar 

  21. Li D, Cheng W, Li Y, Li X, Yin X, Yin Y, Ju H, Ding S (2015) Catalytic hairpin assembly actuated DNA nanotweezer for logic gate building and sensitive enzyme-free biosensing of microRNAs. Anal Chem 88:7500–7506. https://doi.org/10.1021/acs.analchem.5b04844

    Article  CAS  Google Scholar 

  22. Andersen E, Dong M, Nielsen M, Jahn K, Subramani R, Mamdouh W, Golas M, Sander B, Stark H, Oliveira C (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76. https://doi.org/10.1038/nature07971

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Lai M, Zuehlke A, Peng H, Li X, Le X (2016) Binding-induced DNA nanomachines triggered by proteins and nucleic acids. Angew Chem Int Ed 127:14534–14538. https://doi.org/10.1002/anie.201506312

    Article  CAS  Google Scholar 

  24. Zhang P, Li Z, Wang H, Zhuo Y, Yuan R, Chai Y (2017) DNA nanomachine-based regenerated sensing platform: a novel electrochemiluminescence resonance energy transfer strategy for ultra-high sensitive detection of microRNA from cancer cells. Nanoscale 9:2310–2316. https://doi.org/10.1039/c6nr08631d

    Article  CAS  PubMed  Google Scholar 

  25. Liu S, Su W, Li Z, Ding X (2015) Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures. Biosens Bioelectron 71:57–61. https://doi.org/10.1016/j.bios.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  26. Xu Z, Liao L, Chai Y, Wang R, Yuan R (2017) Ultrasensitive electrochemiluminescence biosensor for microRNA detection by 3D DNA walking machine based target conversion and distance-controllable signal quenching and enhancing. Anal Chem 89:8282–8287. https://doi.org/10.1021/acs.analchem.7b01409

    Article  CAS  PubMed  Google Scholar 

  27. Xu Y, Luo X, Geng N, Wu M, Lu Z (2018) DNA nanotweezers with hydrolytic activity for enzyme-free and sensitive detection of fusion gene via logic operation. J Anal Methods Chem 2018:7. https://doi.org/10.1155/2018/4178045

    Article  CAS  Google Scholar 

  28. Gong X, Zhou W, Li D, Chai Y, Xiang Y, Yuan R (2015) RNA-regulated molecular tweezers for sensitive fluorescent detection of microRNA from cancer cells. Biosens Bioelectron 71:98–102. https://doi.org/10.1016/j.bios.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  29. Funabashi H, Shigeto H, Nakatsuka K, Kuroda A (2015) A FRET-based DNA nano-tweezer technique for the imaging analysis of specific mRNA. Analyst 140:999. https://doi.org/10.1039/c4an02064b

    Article  CAS  PubMed  Google Scholar 

  30. Bian X, Guo B, Zhao M, Han D, Cheng W, Song F, Ding S (2019) An enzyme-free “ON-OFF” electrochemiluminescence biosensor for ultrasensitive detection of PML/RARα based on target-switched DNA nanotweezer. ACS AMI 11:3715–3721. https://doi.org/10.1021/acsami.8b18497

    Article  CAS  Google Scholar 

  31. Li D, Wei C, Li Y, Xu Y, Li X, Yin Y, Ju H, Ding S (2016) Catalytic hairpin assembly actuated DNA nanotweezer for logic gate building and sensitive enzyme-free biosensing of microRNAs. Anal Chem 88:7500–7506. https://doi.org/10.1021/acs.analchem.5b04844

    Article  CAS  PubMed  Google Scholar 

  32. Yoshikawa K, Tanabe E, Shibata A, Inoue S, Kitayoshi M, Okimoto S, Fukushima N, Tsujiuchi T (2013) Involvement of oncogenic K-ras on cell migration stimulated by lysophosphatidic acid receptor-2 in pancreatic cancer cells. Exp Cell Res 319:105–112. https://doi.org/10.1016/j.yexcr.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Wang S, Zhang Y, Tian Y, Zhou N (2017) Ultrasensitive detection of DNA based on target-triggered hairpin assembly and exonuclease-assisted recycling amplification. Sens Actuat B-Chem 252:306–312. https://doi.org/10.1016/j.snb.2017.06.014

    Article  CAS  Google Scholar 

  34. Lin L, Liu A, Zhao C, Weng S, Lei Y, Liu Q, Lin X, Chen Y (2013) A chronocoulometric LNA sensor for amplified detection of K-ras mutation based on site-specific DNA cleavage of restriction endonuclease. Biosens Bioelectron 42:409–414. https://doi.org/10.1016/j.bios.2012.09.063

    Article  CAS  PubMed  Google Scholar 

  35. Xu H, Wu D, Li C, Lu Z, Liao X, Huang J, Wu Z (2017) Label-free colorimetric detection of cancer related gene based on two-step amplification of molecular machine. Biosens Bioelectron 90:314–320. https://doi.org/10.1016/j.bios.2016.12.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 31271860), the Six Talent Peaks Project in Jiangsu Province (JY-078) and National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandi Zhou.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Ethical approval

All procedures were approved by medical ethics committee of Jiangnan University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Sun, X., Cai, R. et al. Switchable DNA tweezer and G-quadruplex nanostructures for ultrasensitive voltammetric determination of the K-ras gene fragment. Microchim Acta 186, 843 (2019). https://doi.org/10.1007/s00604-019-3993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3993-5

Keywords

Navigation