Polymer scaffold layers of screen-printed electrodes for homogeneous deposition of silver nanoparticles: application to the amperometric detection of hydrogen peroxide

Abstract

A method is described for electrochemical oxidation of polymers on the surface of screen-printed electrodes (SPCE). These act as scaffold layers for homogeneous deposition of silver nanoparticles (AgNPs). Hexamethylenediamine (HMDA) and poly(ethylene glycol) were immobilized on the SPCE surface via electrochemical oxidation. AgNPs were then electrodeposited on the scaffolds on the SPCE. This type of different carbon chain containing materials like PEG and HMDA act as big tunnels for electron mobility and are useful for the homogenous deposition of AgNPs on the SPCE surface without agglomeration. The resulting sensor was applied to the determination of hydrogen peroxide (H2O2) as a model analyte. It is found to display favorable catalytic and conductive properties towards the reduction of H2O2. Cyclic voltammetry and amperometry revealed that the modified electrode performs better than other modified SPCEs. Best operated at a potential of around −0.61 V (vs Ag|AgCl), the amperometric response is linear in the 10–180 μM H2O2 concentration range and the detection limit is 1.5 μM. The sensor is stable and reproducible. The resultant sensor was appplied to toothpaste analysis, and good recovery values were gained.

Schematic representation of electropolymerization of poly(ethylene glycol) and hexamethylenediamine scaffold layers on screen-printed electrodes for homogeneous electrodeposition of silver nanoparticles. This electrode was applied for the amperometric determination of hydrogen peroxide.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Chen W, Cai S, Ren QQ et al (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58

    CAS  Article  Google Scholar 

  2. 2.

    Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta. https://doi.org/10.1007/s00604-012-0904-4

    Article  Google Scholar 

  3. 3.

    Bai J, Jiang X (2013) A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2in biological environments. Anal Chem. https://doi.org/10.1021/ac400659u

    CAS  Article  Google Scholar 

  4. 4.

    Goud KY, Kailasa SK, Kumar V, Tsang YF, Lee SE, Gobi KV, Kim KH (2018) Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: a review. Biosens Bioelectron 121:205–222. https://doi.org/10.1016/j.bios.2018.08.029

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Azzouz A, Goud KY, Raza N et al (2019) Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. TrAC - Trends Anal Chem 110:15–34

    CAS  Article  Google Scholar 

  6. 6.

    Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    CAS  Article  Google Scholar 

  7. 7.

    Waheed A, Mansha M, Ullah N (2018) Nanomaterials-based electrochemical detection of heavy metals in water: current status, challenges and future direction. TrAC - Trends Anal. Chem. 105:37–51

    CAS  Article  Google Scholar 

  8. 8.

    Kempahanumakkagari S, Deep A, Kim KH et al (2017) Nanomaterial-based electrochemical sensors for arsenic - a review. Biosens Bioelectron 95:106–116

    CAS  Article  Google Scholar 

  9. 9.

    Gȩbicki J, Kloskowski A, Chrzanowski W (2013) Prototype of electrochemical sensor for measurements of volatile organic compounds in gases. Sensors Actuators, B Chem. doi. https://doi.org/10.1016/j.snb.2012.12.025

    Article  Google Scholar 

  10. 10.

    Septiani NLW, Yuliarto B (2016) Review—the development of gas sensor based on carbon nanotubes. J Electrochem Soc. https://doi.org/10.1149/2.0591603jes

    CAS  Article  Google Scholar 

  11. 11.

    Goud KY, Hayat A, Catanante G et al (2017) An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochim Acta 244:96–103. https://doi.org/10.1016/j.electacta.2017.05.089

    CAS  Article  Google Scholar 

  12. 12.

    GOUD KY, M S, REDDY KK, GOBI KV (2016) Development of highly selective electrochemical impedance sensor for detection of sub-micromolar concentrations of 5-Chloro-2,4-dinitrotoluene. J Chem Sci 128:763–770 . doi: https://doi.org/10.1007/s12039-016-1078-0

    CAS  Article  Google Scholar 

  13. 13.

    Li X, Wang L, Wu Q et al (2014) A nonenzymatic hydrogen peroxide sensor based on au–Ag nanotubes and chitosan film. J Electroanal Chem 735:19–23. https://doi.org/10.1016/j.jelechem.2014.09.026

    CAS  Article  Google Scholar 

  14. 14.

    Deac AR, Muresan LM, Cotet LC et al (2017) Hybrid composite material based on graphene and polyhemin for electrochemical detection of hydrogen peroxide. J Electroanal Chem 802:40–47. https://doi.org/10.1016/j.jelechem.2017.08.045

    CAS  Article  Google Scholar 

  15. 15.

    Li W, Kuai L, Qin Q, Geng B (2013) Ag–au bimetallic nanostructures: co-reduction synthesis and their component-dependent performance for enzyme-free H2O2 sensing. J Mater Chem A 1:7111–7117. https://doi.org/10.1039/c3ta00106g

    CAS  Article  Google Scholar 

  16. 16.

    Wang Y, Qian J, Chen Z et al (2019) CeO2 quantum dots modified electrode for detecting hydrogen peroxide. Inorg Chem Commun 101:62–68. https://doi.org/10.1016/j.inoche.2019.01.015

    CAS  Article  Google Scholar 

  17. 17.

    Liu W, Hiekel K, Hübner R et al (2018) Pt and au bimetallic and monometallic nanostructured amperometric sensors for direct detection of hydrogen peroxide: influences of bimetallic effect and silica support. Sensors Actuators B Chem 255:1325–1334. https://doi.org/10.1016/j.snb.2017.08.123

    CAS  Article  Google Scholar 

  18. 18.

    Ramesh S (2013) Sol-gel synthesis and characterization of nanoparticles. J Nanosci. https://doi.org/10.1155/2013/929321

    Article  Google Scholar 

  19. 19.

    Navaladian S, Viswanathan B, Viswanath RP, Varadarajan TK (2007) Thermal decomposition as route for silver nanoparticles. Nanoscale Res Lett. https://doi.org/10.1007/s11671-006-9028-2

    CAS  Article  Google Scholar 

  20. 20.

    Kumar B, Smita K, Cumbal L et al (2014) Sonochemical synthesis of silver nanoparticles using starch: a comparison. Bioinorg Chem Appl. https://doi.org/10.1155/2014/784268

    Google Scholar 

  21. 21.

    Pietrobon B, Kitaev V (2008) Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem Mater. https://doi.org/10.1021/cm800926u

    CAS  Article  Google Scholar 

  22. 22.

    Rodríguez-Sánchez L, Blanco MC, López-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B. https://doi.org/10.1021/jp001761r

    Article  Google Scholar 

  23. 23.

    Nasretdinova GR, Fazleeva RR, Mukhitova RK et al (2015) Electrochemical synthesis of silver nanoparticles in solution. Electrochem Commun. https://doi.org/10.1016/j.elecom.2014.11.016

    CAS  Article  Google Scholar 

  24. 24.

    Khaydarov RA, Khaydarov RR, Gapurova O et al (2009) Electrochemical method for the synthesis of silver nanoparticles. J Nanopart Res. https://doi.org/10.1007/s11051-008-9513-x

    Article  Google Scholar 

  25. 25.

    Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and. Biosensors. 319–326. https://doi.org/10.1002/elan.200503415

    CAS  Article  Google Scholar 

  26. 26.

    Gowthaman NSK, Raj MA, John SA (2017) Nitrogen-doped Graphene as a robust scaffold for the homogeneous deposition of copper nanostructures: a nonenzymatic disposable glucose sensor. ACS Sustain Chem Eng 5:1648–1658. https://doi.org/10.1021/acssuschemeng.6b02390

    CAS  Article  Google Scholar 

  27. 27.

    Kang D, Parolo C, Sun S et al (2018) Expanding the scope of protein-detecting electrochemical DNA “scaffold” sensors. ACS Sensors. https://doi.org/10.1021/acssensors.8b00311

    CAS  Article  Google Scholar 

  28. 28.

    Salariya K, Umar A, Kansal SK, Mehta SK (2017) Rapidly synthesized polyethylene glycol coated cadmium sulphide (CdS) nanoparticles as potential scaffold for highly sensitive and selective lethal cyanide ion sensor. Sensors Actuators, B Chem doi. https://doi.org/10.1016/j.snb.2016.10.064

    CAS  Article  Google Scholar 

  29. 29.

    Hayat A, Haider W, Rolland M, Marty JL (2013) Electrochemical grafting of long spacer arms of hexamethyldiamine on a screen printed carbon electrode surface: application in target induced ochratoxin a electrochemical aptasensor. Analyst 138:2951–2957. https://doi.org/10.1039/c3an00158j

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Hayat A, Andreescu S, Marty JL (2013) Design of PEG-aptamer two piece macromolecules as convenient and integrated sensing platform: application to the label free detection of small size molecules. Biosens Bioelectron 45:168–173. https://doi.org/10.1016/j.bios.2013.01.059

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Cui K, Song Y, Yao Y et al (2008) A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochem Commun 10:663–667. https://doi.org/10.1016/j.elecom.2008.02.016

    CAS  Article  Google Scholar 

  32. 32.

    Wu S, Zhao H, Ju H et al (2006) Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem Commun 8:1197–1203. https://doi.org/10.1016/j.elecom.2006.05.013

    CAS  Article  Google Scholar 

  33. 33.

    Kumar VS, Satyanarayana M, Goud KY, Gobi KV (2018) Pd nanoparticles-embedded carbon nanotube interface for electrocatalytic oxidation of methanol toward DMFC applications. Clean Techn Environ Policy 20:759–768. https://doi.org/10.1007/s10098-017-1449-3

    CAS  Article  Google Scholar 

  34. 34.

    Mattoussi M, Matoussi F, Raouafi N (2018) Non-enzymatic amperometric sensor for hydrogen peroxide detection based on a ferrocene-containing cross-linked redox-active polymer. Sensors Actuators B Chem 274:412–418. https://doi.org/10.1016/j.snb.2018.07.145

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The NATO SPS program supported this research work, project NUKR.SFPP 984637. K. Yugender Goud would like to thank EUPHRATES Program for ERASMUS Mundus Doctoral Fellowship. V. Sunil Kumar would like to thank National Institute of Technology (NITW), Warangal and the Ministry of Human Resource Development (MHRD), India for Senior Research Fellowship.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to K . Yugender Goud or K. Vengatajalabathy Gobi or Jean Louis Marty.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2298 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goud, K...Y., Kumar, V.S., Hayat, A. et al. Polymer scaffold layers of screen-printed electrodes for homogeneous deposition of silver nanoparticles: application to the amperometric detection of hydrogen peroxide. Microchim Acta 186, 810 (2019). https://doi.org/10.1007/s00604-019-3963-y

Download citation

Keywords

  • Electrodeposition
  • PEG
  • Hexamethylenediamine
  • H2O2
  • Electrochemical sensor
  • Scaffold layer
  • Amperometry
  • Voltammetry
  • Toothpaste analysis