Skip to main content
Log in

Fluorometric determination of the activity of alkaline phosphatase based on a system composed of WS2 quantum dots and MnO2 nanosheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric method is described for the detection of alkaline phosphatase (ALP) activity. It is based on the use of the product of hydrolysis of the drug amifostine (a thiophosphoester) by ALP. It is known that MnO2 nanosheets quench the blue fluorescence of tungsten disulfide quantum dots (WS2 QDs) which have excitation/emission wavelengths of 320/448 nm. However, in the presence of ALP and amifostine, the product of hydrolysis [2-(3-aminopropylamino)ethanethiol] triggers the decomposition of the MnO2 nanosheets. This results in the recovery of fluorescence. Based on this finding, an assay for ALP activity was developed that works in the 0.09–1.6 U L−1 range, with a 40 mU L−1 detection limit. The relative standard deviation is 1.87% for five repeated measurements of 0.8 U L−1 ALP. The method was applied to the analysis of ALP in real samples and gave satifactory results.

Schematic representation of a fluorometric method for determination of the activity of alkaline phosphatase (ALP). The fluorescence of a system composed of WS2 quantum dots and MnO2 nanosheets is quenched. Hydrolysis of the cytoprotective adjuvant amifostine (a phosphothioester) by ALP leads to a thiol that causes the decomposition of the MnO2 nanosheets. As a result, the blue fluorescence of the system becomes increasingly restored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang J, Zheng L, Wang Y, Li W, Zhang J, Gu J, Fu Y (2016) Guanine-rich DNA-based peroxidase mimetics for colorimetric assays of alkaline phosphatase. Biosens Bioelectron 77:549–556. https://doi.org/10.1016/j.bios.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  2. Xiao T, Sun J, Zhao J, Wang S, Liu G, Yang X (2018) FRET effect between fluorescent Polydopamine nanoparticles and MnO2 Nanosheets and its application for sensitive sensing of alkaline phosphatase. ACS Appl Mater Interfaces 10(7):6560–6569. https://doi.org/10.1021/acsami.7b18816

    Article  CAS  PubMed  Google Scholar 

  3. Liu XG, Xing XJ, Li B, Guo YM, Zhang YZ, Yang Y, Zhang LF (2016) Fluorescent assay for alkaline phosphatase activity based on graphene oxide integrating with lambda exonuclease. Biosens Bioelectron 81:460–464. https://doi.org/10.1016/j.bios.2016.03.030

    Article  CAS  PubMed  Google Scholar 

  4. Li CM, Zhen SJ, Wang J, Li YF, Huang CZ (2013) A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens Bioelectron 43:366–371. https://doi.org/10.1016/j.bios.2012.12.015

    Article  CAS  PubMed  Google Scholar 

  5. Mao M, Tian T, He Y, Ge Y, Zhou J, Song G (2017) Inner filter effect based fluorometric determination of the activity of alkaline phosphatase by using carbon dots codoped with boron and nitrogen. Mikrochim Acta 185(1):17. https://doi.org/10.1007/s00604-017-2541-4

    Article  CAS  PubMed  Google Scholar 

  6. Ni P, Xie J, Chen C, Jiang Y, Lu Y, Hu X (2019) Fluorometric determination of the activity of alkaline phosphatase and its inhibitors based on ascorbic acid-induced aggregation of carbon dots. Mikrochim Acta 186(3):202. https://doi.org/10.1007/s00604-019-3303-2

    Article  CAS  PubMed  Google Scholar 

  7. Hu L, Zhang Q, Gan X, Lin S, Han S, Zhang Z (2018) Fluorometric turn-on determination of the activity of alkaline phosphatase by using WS2 quantum dots and enzymatic cleavage of ascorbic acid 2-phosphate. Mikrochim Acta 185(8):390. https://doi.org/10.1007/s00604-018-2929-9

    Article  CAS  PubMed  Google Scholar 

  8. Kong W, Tan Q, Guo H, Sun H, Qin X, Qu F (2019) Photoelectrochemical determination of the activity of alkaline phosphatase by using a CdS@graphene conjugate coupled to CoOOH nanosheets for signal amplification. Mikrochim Acta 186(2):73. https://doi.org/10.1007/s00604-018-3182-y

    Article  CAS  PubMed  Google Scholar 

  9. Tian F, Zhou J, Ma J, Liu S, Jiao B, He Y (2019) MnO2 nanosheets as oxidase mimics for colorimetric detection of alkaline phosphatase activity. Mikrochim Acta 186(7):408. https://doi.org/10.1007/s00604-019-3519-1

    Article  CAS  PubMed  Google Scholar 

  10. Mohid SA, Ghorai A, Ilyas H, Mroue KH, Narayanan G, Sarkar A, Ray SK, Biswas K, Bera AK, Malmsten M, Midya A, Bhunia A (2019) Application of tungsten disulfide quantum dot-conjugated antimicrobial peptides in bio-imaging and antimicrobial therapy. Colloids Surf B: Biointerfaces 176:360–370. https://doi.org/10.1016/j.colsurfb.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  11. Yin W, Bai X, Chen P, Zhang X, Su L, Ji C, Gao H, Song H, Yu WW (2018) Rational control of size and photoluminescence of WS2 quantum dots for white light-emitting diodes. ACS Appl Mater Interfaces 10(50):43824–43830. https://doi.org/10.1021/acsami.8b17966

    Article  CAS  PubMed  Google Scholar 

  12. Anantharaj S, Valappil MO, Karthick K, Pillai VK, Alwarappan S, Kundu S (2019) Electrochemically chopped WS2 quantum dots as an efficient and stable electrocatalyst for water reduction. Catal Sci Technol 9(1):223–231. https://doi.org/10.1039/c8cy02168f

    Article  CAS  Google Scholar 

  13. Zhao X, He D, Wang Y, Fu C (2018) Facile fabrication of tungsten disulfide quantum dots (WS2 QDs ) as effective probes for fluorescence detection of dopamine (DA). Mater Chem Phys 207:130–134. https://doi.org/10.1016/j.matchemphys.2017.12.045

    Article  CAS  Google Scholar 

  14. Shi W, Song B, Shi W, Qin X, Liu Z, Tan M, Wang L, Song F, Yuan J (2018) Bimodal phosphorescence-magnetic resonance imaging Nanoprobes for glutathione based on MnO2 Nanosheet-Ru(II) complex Nanoarchitecture. ACS Appl Mater Interfaces 10(33):27681–27691. https://doi.org/10.1021/acsami.8b08872

    Article  CAS  PubMed  Google Scholar 

  15. Han T, Zhu S, Wang S, Wang B, Zhang X, Wang G (2019) Fluorometric methods for determination of H2O2, glucose and cholesterol by using MnO2 nanosheets modified with 5-carboxyfluorescein. Mikrochim Acta 186(5):269. https://doi.org/10.1007/s00604-019-3381-1

    Article  CAS  PubMed  Google Scholar 

  16. Zhu Z, Lin X, Wu L, Zhao C, Zheng Y, Liu A, Lin L, Lin X (2018) “Switch-on” fluorescent nanosensor based on nitrogen-doped carbon dots-MnO2 nanocomposites for probing the activity of acid phosphatase. Sensors Actuators B Chem 274:609–615. https://doi.org/10.1016/j.snb.2018.08.011

    Article  CAS  Google Scholar 

  17. Yan X, Song Y, Zhu C, Song J, Du D, Su X, Lin Y (2016) Graphene quantum dot-MnO2 Nanosheet based optical sensing platform: a sensitive fluorescence "turn off-on" Nanosensor for glutathione detection and intracellular imaging. ACS Appl Mater Interfaces 8(34):21990–21996. https://doi.org/10.1021/acsami.6b05465

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Wei Y, Li P-Z, Zhang P, Su W, Sun Y, Zou R, Zhao Y (2018) Experimental and theoretical investigation of Mesoporous MnO2 Nanosheets with oxygen vacancies for high-efficiency catalytic DeNOx. ACS Catal 8(5):3865–3874. https://doi.org/10.1021/acscatal.8b00267

    Article  CAS  Google Scholar 

  19. Gan Y, Hu N, He C, Zhou S, Tu J, Liang T, Pan Y, Kirsanov D, Legin A, Wan H, Wang P (2019) MnO2 nanosheets as the biomimetic oxidase for rapid and sensitive oxalate detection combining with bionic E-eye. Biosens Bioelectron 130:254–261. https://doi.org/10.1016/j.bios.2019.01.026

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Meng L, Fei Z, Dyson PJ, Jing X, Liu X (2017) MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens Bioelectron 90:69–74. https://doi.org/10.1016/j.bios.2016.11.046

    Article  CAS  PubMed  Google Scholar 

  21. Peng L, Zeng Q, Tie B, Lei M, Yang J, Luo S, Song Z (2015) Manganese dioxide nanosheet suspension: a novel absorbent for cadmium(II) contamination in waterbody. J Colloid Interface Sci 456:108–115. https://doi.org/10.1016/j.jcis.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  22. Duan X, Liu Q, Wang G, Su X (2019) WS2 quantum dots as a sensitive fluorescence probe for the detection of glucose. J Lumin 207:491–496. https://doi.org/10.1016/j.jlumin.2018.11.034

    Article  CAS  Google Scholar 

  23. Qu Z, Li N, Na W, Su X (2019) A novel fluorescence "turn off-on" nanosensor for sensitivity detection acid phosphatase and inhibitor based on glutathione-functionalized graphene quantum dots. Talanta 192:61–68. https://doi.org/10.1016/j.talanta.2018.09.009

    Article  CAS  PubMed  Google Scholar 

  24. Lin L, Xu Y, Zhang S, Ross IM, Ong AC, Allwood DA (2013) Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling. ACS Nano 7(9):8214–8223. https://doi.org/10.1021/nn403682r

    Article  CAS  PubMed  Google Scholar 

  25. Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan PH, Eda G (2013) Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1):791–797. https://doi.org/10.1021/nn305275h

    Article  CAS  PubMed  Google Scholar 

  26. Yan X, Song Y, Zhu C, Li H, Du D, Su X, Lin Y (2018) MnO2 Nanosheet-carbon dots sensing platform for sensitive detection of Organophosphorus pesticides. Anal Chem 90(4):2618–2624. https://doi.org/10.1021/acs.analchem.7b04193

    Article  CAS  PubMed  Google Scholar 

  27. Chen L, Tse WH, Chen Y, McDonald MW, Melling J, Zhang J (2017) Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism. Biosens Bioelectron 91:393–399. https://doi.org/10.1016/j.bios.2016.12.044

    Article  CAS  PubMed  Google Scholar 

  28. Chen H, Wu L, Wan Y, Huang L, Li N, Chen J, Lai G (2019) One-step rapid synthesis of fluorescent silicon nanodots for a hydrogen peroxide-related sensitive and versatile assay based on the inner filter effect. Analyst 144(13):4006–4012. https://doi.org/10.1039/c9an00395a

    Article  CAS  PubMed  Google Scholar 

  29. Shyamal M, Maity S, Mazumdar P, Sahoo GP, Maity R, Misra A (2017) Synthesis of an efficient Pyrene based AIE active functional material for selective sensing of 2,4,6-trinitrophenol. J Photochem Photobiol A Chem 342:1–14. https://doi.org/10.1016/j.jphotochem.2017.03.030

    Article  CAS  Google Scholar 

  30. Zhang QQ, Chen BB, Zou HY, Li YF, Huang CZ (2018) Inner filter with carbon quantum dots: a selective sensing platform for detection of hematin in human red cells. Biosens Bioelectron 100:148–154. https://doi.org/10.1016/j.bios.2017.08.049

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Y, Zou S, Huo D, Hou C, Yang M, Li J, Bian M (2019) Simple and sensitive fluorescence sensor for methotrexate detection based on the inner filter effect of N, S co-doped carbon quantum dots. Anal Chim Acta 1047:179–187. https://doi.org/10.1016/j.aca.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  32. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  33. Ma Y, Cen Y, Sohail M, Xu G, Wei F, Shi M, Xu X, Song Y, Ma Y, Hu Q (2017) A Ratiometric fluorescence universal platform based on N, cu Codoped carbon dots to detect metabolites participating in H2O2-generation reactions. ACS Appl Mater Interfaces 9(38):33011–33019. https://doi.org/10.1021/acsami.7b10548

    Article  CAS  PubMed  Google Scholar 

  34. Tanwar AS, Hussain S, Malik AH, Afroz MA, Iyer PK (2016) Inner filter effect based selective detection of Nitroexplosive-picric acid in aqueous solution and solid support using conjugated polymer. ACS Sensors 1(8):1070–1077. https://doi.org/10.1021/acssensors.6b00441

    Article  CAS  Google Scholar 

  35. Liu Y, Ouyang Q, Li H, Zhang Z, Chen Q (2017) Development of an inner filter effects-based Upconversion nanoparticles-Curcumin Nanosystem for the sensitive sensing of fluoride ion. ACS Appl Mater Interfaces 9(21):18314–18321. https://doi.org/10.1021/acsami.7b04978

    Article  CAS  PubMed  Google Scholar 

  36. Tanwar AS, Adil LR, Afroz MA, Iyer PK (2018) Inner filter effect and resonance energy transfer based Attogram level detection of Nitroexplosive picric acid using dual emitting cationic conjugated Polyfluorene. ACS Sens 3(8):1451–1461. https://doi.org/10.1021/acssensors.8b00093

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 21775052 and No. 21575048), the Science and Technology Development project of Jilin province, China (No. 20180414013GH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguang Su.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Liu, Q. & Su, X. Fluorometric determination of the activity of alkaline phosphatase based on a system composed of WS2 quantum dots and MnO2 nanosheets. Microchim Acta 186, 839 (2019). https://doi.org/10.1007/s00604-019-3948-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3948-x

Keywords

Navigation