Skip to main content
Log in

A monolithic capillary modified with a copoplymer prepared from the ionic liquid 1-vinyl-3-octylimidazolium bromide and styrene for electrochromatography of alkylbenzenes, polycyclic aromatic hydrocarbons, proteins and amino acids

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A monolithic capillary column was prepared by single-step copolymerization of the ionic liquid 1-vinyl-3-octylimidazolium bromide (VOI) and styrene. The VOI and styrene monomers were introduced to provide multiple interaction sites and increase hydrophobicity and aromaticity of the monolithic column, respectively. The effect of porogen ratio, monomer ratio and reaction temperature on permeability was investigated. The resulting column was characterized by scanning electron microscopy, and the results suggest that the column possesses high porosity and good homogeneity. A relatively strong anodic electroosmotic flow was generated over a wide range of pH values (pH 2.0–10.0), and this facilitates the rapid separation of analytes within 12 min. Alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs), proteins and amino acids were used to evaluate the performance of the monolithic column under capillary electrochromatography mode by UV detection. Mixed-mode retention mechanisms including hydrophobic interaction, π-stacking, ion-exclusion interaction were observed. The monolithic column exhibits high column efficiency (8.72 × 104 plates∙m−1) and satisfying separation capability (the resolution of four alkylbenzenes: 2.54, 2.86 and 4.62, four PAHs: 2.79, 4.83 and 4.77, three proteins: 4.35 and 2.86, two amino acids: 3.34).

Schematic representation of capillary electrochromatography (CEC) systems with ionic liquid and styrene based organic polymer monolithic column for separation of alkylbenzenes, polycyclic aromatic hydrocarbons, proteins and amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarongoy FM, Haddad PR, Quirino JP (2017) Recent developments in open tubular capillary electrochromatography from 2016-2017. Electrophoresis 39(1). https://doi.org/10.1002/elps.201700280

    Article  Google Scholar 

  2. Zhao H, Wang Y, Zhang D, Cheng H, Wang Y (2017) Electrochromatographic performance of graphene and graphene oxide modified silica particles packed capillary columns. Electrophoresis 39:933–940. https://doi.org/10.1002/elps.201700435

    Article  CAS  Google Scholar 

  3. Yang X, Sun X, Feng Z, Du Y, Chen J, Ma X, Li X (2019) Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids. Microchim Acta 186(4):244. https://doi.org/10.1007/s00604-019-3318-8

    Article  CAS  Google Scholar 

  4. Sun X, Du Y, Zhao S, Huang Z, Feng Z (2019) Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly (glycidyl methacrylate) nanoparticles. Microchim Acta 186(2):128. https://doi.org/10.1007/s00604-018-3163-1

    Article  CAS  Google Scholar 

  5. Hong T, Chen X, Xu Y et al (2016) Preparation of graphene oxide-modified affinity capillary monoliths based on three types of amino donor for chiral separation and proteolysis. J Chromatogr A 1456:249–256. https://doi.org/10.1016/j.chroma.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  6. Zhang B, Lei X, Deng L, Li M, Yao S, Wu X (2018) Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds. Microchim Acta 185(7):318. https://doi.org/10.1007/s00604-018-2847-x

    Article  CAS  Google Scholar 

  7. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168. https://doi.org/10.1016/j.chroma.2007.05.090

    Article  CAS  PubMed  Google Scholar 

  8. Hilder EF, Klampfl CW, Macka M (2000) Electro-osmotic and pressure-driven flow properties of frits for packed column capillary electrochromatography prepared from functionalised and bare silica packings. Analyst 125(1):1–4. https://doi.org/10.1039/a908102j

    Article  CAS  Google Scholar 

  9. Wang X, Lin X, Xie Z et al (2009) Preparation and evaluation of a neutral methacrylate-based monolithic column for hydrophilic interaction stationary phase by pressurized capillary electrochromatography. J Chromatogr A 1216:4611–4617. https://doi.org/10.1016/j.chroma.2009.03.057

    Article  CAS  PubMed  Google Scholar 

  10. Mao Z, Bao T, Li Z, Chen Z (2018) Ionic liquid-copolymerized monolith incorporated with zeolitic imidazolate framework-8 as stationary phases for enhancing reversed phase selectivity in capillary electrochromatography. J Chromatogr A 1578:99–105. https://doi.org/10.1016/j.chroma.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Du P, Gu W, Zhao Q, Huang Y, Liu Z (2016) Monolithic column incorporated with lanthanide metal-organic framework for capillary electrochromatography. J Chromatogr A 1461:171–178. https://doi.org/10.1016/j.chroma.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Shen S, Lu X, Ye F (2017) One-pot preparation of an organic polymer monolith by thiol-ene click chemistry for capillary electrochromatography. J Sep Sci 40:3144–3152. https://doi.org/10.1002/jssc.201700110

    Article  CAS  PubMed  Google Scholar 

  13. Murauer A, Bakry R, Schottenberger H, Huck C, Ganzera M (2017) An innovative monolithic zwitterionic stationary phase for the separation of phenolic acids in coffee bean extracts by capillary electrochromatography. Anal Chim Acta 963:136–142. https://doi.org/10.1016/j.aca.2017.01.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin S, Wang C, Fuh M (2016) Chromatographic selectivity of poly(alkyl methacrylate-co-divinylbenzene) monolithic columns for polar aromatic compounds by pressure-driven capillary liquid chromatography. Anal Chim Acta 939:117–127. https://doi.org/10.1016/j.aca.2016.08.034

    Article  CAS  PubMed  Google Scholar 

  15. Yusuf K, Badjah-Hadj-Ahmed AY, Aqel A, Alothman ZA (2016) Monolithic metal-organic framework mil-53(al)-polymethacrylate composite column for the reversed-phase capillary liquid chromatography separation of small aromatics. J Sep Sci 39:880–888. https://doi.org/10.1002/jssc.201501289

    Article  CAS  PubMed  Google Scholar 

  16. Miksik I (2016) Capillary electrochromatography of proteins and peptides (2006-2015). J Sep Sci 40:251–271. https://doi.org/10.1002/jssc.201600908

    Article  CAS  PubMed  Google Scholar 

  17. Pandey S (2006) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556:38–45. https://doi.org/10.1016/j.aca.2005.06.038

    Article  CAS  PubMed  Google Scholar 

  18. Payagala T, Zhang Y, Wanigasekara E (2009) Trigonal tricationic ionic liquids: a reneration of gas chromatographic stationary phases. Anal Chem 81:160–173. https://doi.org/10.1021/ac8016949

    Article  CAS  PubMed  Google Scholar 

  19. Hsieh Y, Horng R, Ho W, Huang P, Hsu C, Whang T (2008) Characterizations for vinylimidazolium based ionic liquid polymer stationary phases for capillary gas chromatography. Chromatographia 67:413–420. https://doi.org/10.1365/s10337-008-0531-8

    Article  CAS  Google Scholar 

  20. Chen J, Zhu X (2016) Magnetic solid phase extraction using ionic liquid-coated core–shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of rhodamine b in food samples. Food Chem 200:10–15. https://doi.org/10.1016/j.foodchem.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Bai L, Wei Z, Qin J, Ma Y, Liu H (2015) Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography. J Sep Sci 38:2101–2108. https://doi.org/10.1002/jssc.201500061

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Wu F, Zhao Q, Xia R, Lin X, Xie Z (2016) Rapid fabrication of ionic liquid-functionalized monolithic column via in-situ urea-formaldehyde polycondensation for pressurized capillary electrochromatography. J Chromatogr A 1449:100–108. https://doi.org/10.1016/j.chroma.2016.04.069

    Article  CAS  PubMed  Google Scholar 

  23. Han H, Li J, Wang X et al (2011) Synthesis of ionic liquid-bonded organic-silica hybrid monolithic column for capillary electrochromatography. J Sep Sci 34:135–142. https://doi.org/10.1002/jssc.201100050

    Article  CAS  Google Scholar 

  24. Liu C, Deng Q, Fang G, Dang M, Wang S (2017) Capillary electrochromatography immunoassay for alpha-fetoprotein based on poly (guanidinium ionic liquid) monolithic material. Anal Biochem 530:50–56. https://doi.org/10.1016/j.ab.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  25. Lin S, Fuh M (2018) Preparation and characterization of vinylimidazole-based polymer monolithic stationary phases for reversed-phase and hydrophilic interaction capillary liquid chromatography. Talanta 187:73–82. https://doi.org/10.1016/j.talanta.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  26. Shi X, Qiao L, Xu G (2015) Recent development of ionic liquid stationary phases for liquid chromatography. J Chromatogr A 1420:1–15. https://doi.org/10.1016/j.chroma.2015.09.090

    Article  CAS  PubMed  Google Scholar 

  27. Li M, Lei X, Huang Y, Guo Y, Zhang B, Tang F (2019) Ternary thiol-ene photopolymerization for facile preparation of ionic liquid-functionalized hybrid monolithic columns based on polyhedral oligomeric silsesquioxanes. J Chromatogr A 1597:167–178. https://doi.org/10.1016/j.chroma.2019.03.032

    Article  CAS  PubMed  Google Scholar 

  28. Mao Z, Chen Z (2016) Monolithic column modified with bifunctional ionic liquid and styrene stationary phases for capillary electrochromatography. J Chromatogr A 1480:99–105. https://doi.org/10.1016/j.chroma.2016.12.030

    Article  CAS  PubMed  Google Scholar 

  29. Shan Y, Qiao L, Shi X, Xu G (2015) Preparation and evaluation of a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid. J Chromatogr A 1375:101–109. https://doi.org/10.1016/j.chroma.2014.11.084

    Article  CAS  PubMed  Google Scholar 

  30. Anthony JL, And EJM, Brennecke JF (2001) Solution thermodynamics of Imidazolium-based ionic liquids and water. J Phys Chem B 105:10942–10949. https://doi.org/10.1021/jp0112368

    Article  CAS  Google Scholar 

  31. Tian X, Zhang X, Wei L et al (2010) Multi-scale simulation of the 1,3-butadiene extraction separation process with an ionic liquid additive. Green Chem 12:1263–1270. https://doi.org/10.1039/b918924f

    Article  CAS  Google Scholar 

  32. Dana M, Planeta J, King A, Wiedmer S (2018) Immobilization of a phosphonium ionic liquid on a silica monolith for hydrophilic interaction chromatography. J Chromatogr A 1552:53–59. https://doi.org/10.1016/j.chroma.2018.04.012

    Article  CAS  Google Scholar 

  33. Liu Z, Du Y, Feng Z (2016) Enantioseparation of drugs by capillary electrochromatography using a stationary phase covalently modified with graphene oxide. Microchim Acta 184(2):583–593. https://doi.org/10.1007/s00604-016-2014-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (Program No.: BK20141353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiang Du.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 8838 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Y., Du, Y., Sun, X. et al. A monolithic capillary modified with a copoplymer prepared from the ionic liquid 1-vinyl-3-octylimidazolium bromide and styrene for electrochromatography of alkylbenzenes, polycyclic aromatic hydrocarbons, proteins and amino acids. Microchim Acta 187, 67 (2020). https://doi.org/10.1007/s00604-019-3894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3894-7

Keywords

Navigation