Skip to main content
Log in

Ratiometric optical thermometer based on the use of manganese(II)-doped Cs3Cu2I5 thermochromic and fluorescent halides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The inconsistent thermal quenching performance of manganese(II)-doped Cs3Cu2I5 microparticles is exploited in a highly sensitive noninvasive optical thermometer. The ratio of the emissions of Cu(II) and Mn(II) ions in the microparticles is highly temperature dependent in the range from 298 to 498 K. The best absolute and relative sensitivities are 0.547 K−1 and 0.525% K−1, respectively. The emission spectrum, under 300-nm photoexcitation, has emission peaks at 448 and 556 nm. This is the result of energy transfer between the Cu(II) and Mn(II) ions whose efficiency can reach up to 57% when the Mn(II) ion concentration is 2 mol%. The emission color of the microparticles changes from cyan to green when increasing the temperature from 298 to 498 K.

Synthesis of novel Mn(II)-doped Cs3Cu2I5 thermochromic halides with admirable luminescent behaviors for high sensitive ratiometric thermometry and safety sign in high temperature environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang F, Yang T, Wang S, Lin L, Hu T, Chen D (2018) Temperature sensitive cross relaxation between Er3+ ions in laminated hosts: a novel mechanism for thermochromic upconversion and high performance thermometry. J Mater Chem C 6:12364–12370

    Article  CAS  Google Scholar 

  2. Lu H, Hao H, Gao Y, Li D, Shi G, Song Y, Wang Y, Zhang X (2017) Optical sensing of temperature based on non-thermally coupled levels and upconverted white light emission of a Gd2(WO4)3 phosphor co-doped with in ho(III), tm(III), and Yb(III). Microchim Acta 184:641–646

    Article  CAS  Google Scholar 

  3. Xu S, Yu Y, Gao Y, Zhang Y, Li X, Zhang J, Wang Y, Chen B (2018) Mesoporous silica coating NaYF4:Yb,Er@NaYF4 upconversion nanoparticles loaded with ruthenium(II) complex nanoparticles: Fluorometric sensing and cellular imaging of temperature by upconversion and of oxygen by downconversion. Microchim Acta 185:454

    Article  Google Scholar 

  4. Du P, Hua Y, Yu JS (2018) Energy transfer from VO4 3− group to Sm3+ ions in Ba3(VO4)2:3xSm3+ microparticles: a bifunctional platform for simultaneous optical thermometer and safety sign. Chem Eng J 352:352–359

    Article  CAS  Google Scholar 

  5. Suo H, Zhao X, Zhang Z, Shi R, Wu Y, Xiang J, Guo C (2018) Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres. Nanoscale 10:9245–9251

    Article  CAS  Google Scholar 

  6. Elzbieciak K, Bednarkiewicz A, Marciniak L (2018) Temperature sensitivity modulation through crystal field engineering in Ga3+ co-doped Gd3Al5-xGaxO12:Cr3+,Nd3+ nanothermometers. Sensors Actuators B Chem 269:96–102

    Article  CAS  Google Scholar 

  7. Chen D, Xu M, Liu S, Li X (2017) Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry. Sensors Actuators B 246:756–760

    Article  CAS  Google Scholar 

  8. Wang X, Wang Y, Marques-Hueso J, Yan X (2017) Improving optical temperature sensing performance of Er3+ doped Y2O3 microtubes via co-doping and controlling excitation power. Sci Rep 7:758

    Article  Google Scholar 

  9. Li F, Liu Y, Wang H, Zhan Q, Liu Q, Xia Z (2018) Postsynthetic surface trap removal of CsPbX3 (X = cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem Mater 30:8546–8554

    Article  CAS  Google Scholar 

  10. Amgar D, Stern A, Rotem D, Porath D, Etgar L (2017) Tunable length and optical properties of CsPbX3 (X = cl, Br, I) nanowires with a few unit cells. Nano Lett 17:1007–1013

    Article  CAS  Google Scholar 

  11. Liu Y, Jing Y, Zhao J, Liu Q, Xia Z (2019) Design design optimization of Lead-free Perovskite Cs2AgInCl6:bi Nanocrystals with 11.4% photoluminescence quantum yield. Chem Mater 31:3333–3339

    Article  CAS  Google Scholar 

  12. Roccanova R, Yangui A, Nhalil H, Shi H, Du M, Saparov B (2019) Near-Unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0 ≤ x ≤ 5). ACS Appl Electron Mater 1:269–274

    Article  CAS  Google Scholar 

  13. Yang P, Liu G, Liu B, Liu X, Lou Y, Chen J, Zhao X (2018) All-inorganic Cs2CuX4 (X = cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence. Chem Commun 54:11638–11641

    Article  CAS  Google Scholar 

  14. Li T, Mo X, Peng C, Lu Q, Qi C, Tao X, Ouyang Y, Zhou Y (2019) Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses. Chem Commun 55:4554–4557

    Article  CAS  Google Scholar 

  15. Tong X, Yang J, Wu P, Zhang X, Seo HJ (2019) Color tunable emission from CaS:cu+,Mn2+ rare-earth-free phosphors prepared by a simple carbon-thermal reduction method. J Alloys Compd 779:399–403

    Article  CAS  Google Scholar 

  16. Zhou J, Rong X, Zhang P, Molokeev MS, Wei P, Liu Q, Zhang X, Xia Z (2019) Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double Perovskite Cs2NaBi1-xInxCl6. Adv Optical Mater 7:1801435

    Article  Google Scholar 

  17. Beaulac R, Archer PI, Ochsenbein ST, Gamelin DR (2008) Mn2+doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics. Adv Funct Mater 18:3873–3891

    Article  CAS  Google Scholar 

  18. Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H (2018) Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv Mater 30:1804547

    Article  Google Scholar 

  19. Zhou C, Lin H, Shi H, Tian Y, Pak C, Shatruk M, Zhou Y, Djurovich P, Du M, Ma B (2018) A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission. Angew Chem Int Ed 57:1021–1024

    Article  CAS  Google Scholar 

  20. Zheng W, Wu H, Ju G, Mo Z, Dong H, Hu Y, Jin Y (2019) Crystal field modulation-control, bandgap engineering and shallow/deep traps tailoring-guided design of a color-tunable long-persistent phosphor (Ca,Sr)Ga4O7:Mn2+,Bi3+. Dalton Trans 48:253–265

    Article  CAS  Google Scholar 

  21. Zhang X, Zhu Z, Guo Z, Sun Z, Chen Y (2019) A ratiometric optical thermometer with high sensitivity and superior signal discriminability based on Na3Sc2P3O12: Eu2+, Mn2+ thermochromic phosphor. Chem Eng J 356:413–422

    Article  CAS  Google Scholar 

  22. Dang P, Liang S, Li G, Lian H, Shang M, Lin J (2018) Broad color tuning of Bi3+/Eu3+-doped (Ba,Sr)3Sc4O9 solid solution compounds via crystal field modulation and energy transfer. J Mater Chem C 6:9990–9999

    Article  CAS  Google Scholar 

  23. Xu H, Zhang W, Liu R, Liu Y, Zhou T, Cho Y, Gao W, Yan C, Hirosaki N, Xie R (2018) Significantly enhanced photoluminescence and thermal stability of La3Si8N11O4:Ce3+,Tb3+ via the Ce3+ → Tb3+ energy transfer: a blue-green phosphor for ultraviolet LEDs. RSC Adv 8:35271–35279

    Article  CAS  Google Scholar 

  24. Si J, Wang L, Liu L, Yi W, Cai G, Takeda T, Funahashi S, Hirosaki N, Xie R (2019) Structure, luminescence and energy transfer in Ce3+ and Mn2+ codoped γ-AlON phosphors. J Mater Chem C 7:733–742

    Article  CAS  Google Scholar 

  25. Struck CW, Fonger WH (1971) Thermal quenching of Tb3+, Tm3+, Pr3+, and Dy3+ 4fn emitting states in La2O2S. J Appl Phys 42:4515–4516

    Article  CAS  Google Scholar 

  26. Huang F, Chen D (2017) Synthesis of Mn2+:Zn2SiO4–Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions. J Mater Chem C 5:5176–5182

    Article  CAS  Google Scholar 

  27. Elzbieciak K, Bednarkiewicz A, Marciniak L (2018) Temperature sensitivity modulation through crystal field engineering in Ga3+ co-doped Gd3Al5-xGaxO12:Cr3+, Nd3+ nanothermometers. Sensors Actuators B Chem 269:96–102

    Article  CAS  Google Scholar 

  28. Chen X, Zheng Z, Teng L, Wei R, Hu F, Guo H (2018) Self-calibrated optical thermometer based on luminescence from SrLu2O4:Bi3+,Eu3+ phosphors. RSC Adv 8:35422–35428

    Article  CAS  Google Scholar 

  29. Xia H, Lei L, Hong W, Xu S (2018) A novel Ce3+/Mn2+/Eu3+ tri-doped GdF3 nanocrystals for optical temperature sensor and anti-counterfeiting. J Alloys Compd 757:239–245

    Article  CAS  Google Scholar 

  30. Du P, Yu JS (2018) Synthesis of Er(III)/Yb(III)-doped BiF3 upconversion nanoparticles for use in optical thermometry. Microchim Acta 185:237

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (No. 11574168) and the key research and development plan of Zhejiang Province (2019C04009). This work was also supported by the K. C. Wong Magna Fund in Ningbo University (xkzw1507) and Natural Science Foundation of Ningbo (2018A610076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Du, Laihui Luo or Zugang Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, P., Cai, P., Li, W. et al. Ratiometric optical thermometer based on the use of manganese(II)-doped Cs3Cu2I5 thermochromic and fluorescent halides. Microchim Acta 186, 730 (2019). https://doi.org/10.1007/s00604-019-3881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3881-z

Keywords

Navigation