Optical aptasensing of mercury(II) by using salt-induced and exonuclease I-induced gold nanoparticle aggregation under dark-field microscope observation


An optical method for determination of Hg(II) is described that exploits the aggregation of gold nanoparticles (AuNPs) under dark-field microscope (DFM) observation. This assay is based on the use of a Hg(II)-specific aptamer, AuNPs modified with complementary DNA strands, and exonuclease I (Exo I). In the absence of Hg(II), the added dsDNA prevents salt-induced aggregation of the green-colored AuNPs. If Hg(II) is added, the aptamer will capture it to form T-Hg(II)-T pairs, and the complementary strand is digested by Exo I. On addition of a solution of NaCl, the AuNPs will aggregate. This is accompanied by a color change from green to orange/red) in the dark-field image. By calculating the intensity of the orange/red dots in the dark-field image, concentration of Hg(II) can be accurately determined. The limit of detection is as low as 36 fM, and response is a linear in the 83 fM to 8.3 μM Hg(II) concentration range.

Schematic representation of a colorimetric assay for Hg(II) based on the use of a mercury(II)-specific aptamer, gold nanoparticles modified with complementary DNA strands, and exonuclease I.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Das R, Giri S, Muliwa AM, Maity A (2017) High-performance hg(II) removal using thiol-functionalized polypyrrole (PPy/MAA) composite and effective catalytic activity of hg(II)-adsorbed waste material. ACS Sustain Chem Eng 5:7524–7536

    CAS  Article  Google Scholar 

  2. 2.

    Li WC, Tse HF (2015) Health risk and significance of mercury in the environment. Environ Sci Pollut Res 22:192–201

    CAS  Article  Google Scholar 

  3. 3.

    Chandra V, Kim KS (2011) Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem Commun 47:3942–3944

    CAS  Article  Google Scholar 

  4. 4.

    Zhu ZL, Chan GCY, Ray SJ, Zhang XR, Hieftje GM (2008) Use of a solution cathode glow discharge for cold vapor generation of mercury with determination by ICP-atomic emission spectrometry. Anal Chem 80:7043–7050

    CAS  Article  Google Scholar 

  5. 5.

    Erxleben H, Ruzicka J (2005) Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system. Anal Chem 77:5124–5128

    CAS  Article  Google Scholar 

  6. 6.

    Yan WJ, Wang YJ, Zhuang H, Zhang JH (2015) DNA-engineered chiroplasmonic heteropyramids for ultrasensitive detection of mercury ion. Biosens Bioelectron 68:516–520

    CAS  Article  Google Scholar 

  7. 7.

    Rodrigues JL, Torres DP, Souza VCD, Batista BL, de Souza SS, Curtius AJ, Barbosa F (2009) Determination of total and inorganic mercury in whole blood by cold vapor inductively coupled plasma mass spectrometry (CV ICP-MS) with alkaline sample preparation. J Anal At Spectrom 24:1414–1420

    CAS  Article  Google Scholar 

  8. 8.

    Lin ZZ, Li XH, Kraatz HB (2011) Impedimetric immobilized DNA-based sensor for simultaneous detection of Pb2+, Ag+, and Hg2+. Anal Chem 83:6896–6901

    CAS  Article  Google Scholar 

  9. 9.

    Du YX, Liu RY, Liu BH, Wang SH, Han MY, Zhang ZP (2013) Surface-enhanced raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange. Anal Chem 85:3160–3165

    CAS  Article  Google Scholar 

  10. 10.

    Jing C, Gu Z, Ying YL, Li DW, Zhang L, Long YT (2012) Chrominance to dimension: a real-time method for measuring the size of single gold nanoparticles. Anal Chem 84:4284–4291

    CAS  Article  Google Scholar 

  11. 11.

    Xu X, Li T, Xu Z, Wei H, Lin R, Xia B, Liu F, Li N (2015) Automatic enumeration of gold nanomaterials at the single-particle level. Anal Chem 87:2576–2581

    CAS  Article  Google Scholar 

  12. 12.

    Shi L, Jing C, Ma W, Li DW, Halls JE, Marken F, Long YT (2013) Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angew. Chem. Int Ed 52:6011–6014

    CAS  Article  Google Scholar 

  13. 13.

    Jing C, Gu Z, Xie T, Long YT (2016) Color-coded imaging of electrochromic process at single nanoparticle level. Chem Sci 7:5347–5351

    CAS  Article  Google Scholar 

  14. 14.

    Chen H, Shao L, Li Q, Wang J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42:2679–2724

    CAS  Article  Google Scholar 

  15. 15.

    Yan Y, Meng L, Zhang W, Zheng Y, Wang S, Ren B, Yang ZL, Yan X (2017) High-throughput single-particle analysis of metal-enhanced fluorescence in free solution using ag@SiO2 core-shell nanoparticles. ACS Sens 2:1369–1376

    CAS  Article  Google Scholar 

  16. 16.

    Jiang N, Zhuo X, Wang J (2018) Active plasmonics: principles, structures, and applications. Chem Rev 118:3054–3099

    CAS  Article  Google Scholar 

  17. 17.

    Poon CY, Wei L, Xu YL, Chen B, Xiao LH, Li HW (2016) Quantification of cancer biomarkers in serum using scattering-based quantitative single particle intensity measurement with a dark-field microscope. Anal Chem 88:8849–8856

    CAS  Article  Google Scholar 

  18. 18.

    Liu XJ, Wu ZJ, Zhang QQ, Zhao WF, Zong CH, Gai HW (2016) Single gold nanoparticle-based colorimetric detection of picomolar mercury ion with dark-field microscopy. Anal Chem 88:2119–2124

    CAS  Article  Google Scholar 

  19. 19.

    Kamali KZ, Pandikumar A, Jayabal S, Ramaraj R, Lim HN, Ong BH, Bien CSD, Kee YY, Huang NM (2016) Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver@graphene oxide nanocomposite materials. Microchim Acta 183:369–377

    Article  Google Scholar 

  20. 20.

    Hong MQ, Zeng BH, Li MY, Xu XQ (2018) Chen GN (2018) an ultrasensitive conformation-dependent colorimetric probe for the detection of mercury(II) using exonuclease III-assisted target recycling and gold nanoparticles. Microchim Acta 185:72

    Article  Google Scholar 

  21. 21.

    Wang Q, Yang X, Yang X, Wang K, Zhang H, Liu P (2015) An enzyme-free colorimetric assay using hybridization chain reaction amplification and split aptamers. Analyst 140:7657–7662

    CAS  Article  Google Scholar 

  22. 22.

    Ma HY, Xue N, Wu SJ, Li ZB (2019) Miao XM (2019) Fluorometric determination of mercury(II) using positively charged gold nanoparticles, DNA-templated silver nanoclusters, T-hg(II)-T interaction and exonuclease assisted signal amplification. Microchim Acta 186:317

    Article  Google Scholar 

  23. 23.

    Yang J, Wang Z, Li Y, Zhuang Q, Zhao W, Gu J (2016) Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury(II) ions in aqueous phase. RSC Adv 6:69807–69814

    CAS  Article  Google Scholar 

  24. 24.

    Ning Y, Hu J, Wei K, He GL, Wu T (2019) Lu FG (2019) Fluorometric determination of mercury(II) via a graphene oxide-based assay using exonuclease III-assisted signal amplification and thymidine–hg(II)–thymidine interaction. Microchim Acta 186:216

    Article  Google Scholar 

  25. 25.

    Hu TY, Yan X, Na WD, Su XG (2016) Aptamer-based aggregation assay for mercury(II) using gold nanoparticles and fluorescent CdTe quantum dots. Microchim Acta 183:2131–2137

    CAS  Article  Google Scholar 

  26. 26.

    She P, Chu Y, Liu C, Guo X, Zhao K, Li J, Du H, Zhang X, Wang H, Deng A (2016) A competitive immunoassay for ultrasensitive detection of Hg2+ in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering. Anal Chim Acta 906:139–147

    CAS  Article  Google Scholar 

  27. 27.

    Li F, Feng Y, Liu SF, Tang B (2011) Triggered activity of a nicking endonuclease for mercuric(II) ion-mediated duplex-like DNA cleavage. Chem Commun 47:6347–6349

    CAS  Article  Google Scholar 

Download references


All authors gratefully acknowledge the financial support of Scientific Research Project of Beijing Educational Committee (Grant No. KM201710028009), Youth Innovative Research Team of Capital Normal University, and Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds (Grant No. 19530050179).

Author information



Corresponding author

Correspondence to Zhengbo Chen.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A method based on intensity of AuNPs for highly sensitive and selective Hg2+ sensing using dark-field microscope

Electronic supplementary material


(DOC 268 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Q. & Chen, Z. Optical aptasensing of mercury(II) by using salt-induced and exonuclease I-induced gold nanoparticle aggregation under dark-field microscope observation. Microchim Acta 186, 729 (2019). https://doi.org/10.1007/s00604-019-3876-9

Download citation


  • Mercury assay
  • Gold nanoparticle aggregation
  • Dark-field microscope
  • Exonuclease I
  • Red nanodots
  • Green nanodots
  • Aptamer
  • High sensitivity