Skip to main content
Log in

Ultrasensitive electrochemical sensing of dopamine by using dihydroxylatopillar[5]arene-modified gold nanoparticles and anionic pillar[5]arene-functionalized graphitic carbon nitride

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrasensitive and highly selective electrochemical method is described for the determination of dopamine (DA). It is based on the use of a multi-functional nanomaterial composed of water-soluble pillar[5]arene (WP5), dihydroxylatopillar[5]arene (2HP5)-modified gold nanoparticles (GNPs), and graphitic carbon nitride (g-C3N4), with an architecture of type 2HP5@GNP@WP5@g-C3N4. The modified GNPs were prepared in the presence of 2HP5 that acts as reducing agent and stabilizer in the formation of GNPs. 2HP5@GNP acts as an electrocatalyst in sensing DA. The WP5@g-C3N4 nanocomposite is obtained by π interaction between WP5 and g-C3N4 after sonication in the presence of WP5. The composite serves as a host for recognition and gathering DA on the surface of the electrode. The host-guest recognition mechanism between WP5 and DA is studied by 1H NMR and UV-vis. The electrode, best operated at a working potential of 0.18 V (vs. SCE), works in the concentration range of 0.012–5.0 μM DA and has a 4 nM detection limit.

Schematic illustration of the 2HP5@GNP@WP5@g-C3N4 hybrid nanomaterial for application in voltammetric sensing of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen JF, Lin Q, Zhang YM, Yao H, Wei TB (2017) Pillararene-based fluorescent chemosensors: recent advances and perspectives. Chem Commun 53:13296–13311

    Article  CAS  Google Scholar 

  2. Li ER, Zhou YJ, Zhao R, Jie KC, Huang FH (2019) Dihalobenzene shape sorting by nonporous adaptive crystals of perbromoethylated pillararenes. Angew Chem Int Ed 58:3981–3985

    Article  CAS  Google Scholar 

  3. Shumilova TA, Rueffer T, Lang H, Kataev EA (2018) Straightforward design of fluorescent receptors for sulfate: study of non-covalent interactions contributing to host-guest formation. Chem Eur J 24:1500–1504

    Article  CAS  Google Scholar 

  4. Ogoshi T, Maruyama K, Sakatsume Y, Kakuta T, Yamagishi T, Ichikawa T, Mizuno M (2019) Guest vapor-induced state change of structural liquid pillar[6]arene. J Am Chem Soc 141:785–789

    Article  CAS  Google Scholar 

  5. Ogoshi T, Kanai S, Fujinami S, Yamagishi T, Nakamoto Y (2008) Para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J Am Chem Soc 130:5022–5023

    Article  CAS  Google Scholar 

  6. Ogoshi T, Yamagishi T, Nakamoto Y (2016) Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem Rev 116:7937–8002

    Article  CAS  Google Scholar 

  7. Kaizerman-Kane D, Hadar M, Tal N, Dobrovetsky R, Zafrani Y, Cohen Y (2019) pH-responsive pillar[6]arene-based water-soluble supramolecular hexagonal boxes. Angew Chem Int Ed 131:5356–5360

    Article  Google Scholar 

  8. Zheng B, Wang F, Dong S, Huang F (2012) Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev 41:1621–1636

    Article  CAS  Google Scholar 

  9. Homden DM, Redshaw C (2008) The use of calixarenes in metal based catalysis. Chem Rev 108:5086–5130

    Article  CAS  Google Scholar 

  10. Cragg PJ, Sharma K (2012) Pillar[5]arenes: fascinating cyclophanes with a bright future. Chem Soc Rev 41:597–607

    Article  CAS  Google Scholar 

  11. Lin Q, Guan XW, Song SS, Fan HY, Yao H, Zhang YM, Wei TB (2019) A novel supramolecular polymer π-gel based on bis-naphthalimide functionalized-pillar[5]arene for fluorescence detection and separation of aromatic acid isomers. Polym Chem 10:253–259

    Article  CAS  Google Scholar 

  12. Zhou J, Chen M, Xie J, Diao GW (2013) Synergistically enhanced electrochemical response of host−guest recognition based on ternary nanocomposites: reduced graphene oxide-amphiphilic pillar[5]arene-gold nanoparticles. ACS Appl Mater Interfaces 5:11218–11224

    Article  CAS  Google Scholar 

  13. Zhou W, Gao X, Liu DB, Chen XY (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115:10575–10636

    Article  CAS  Google Scholar 

  14. Lin XY, Wang YF, Zou MM, Ni YN (2019) Sensitive and fast analysis of terbutaline sulfate in food using a modified electrode based on a MoS2/AuNPs nanocomposite. Anal Methods 11:1353–1360

    Article  CAS  Google Scholar 

  15. Huang Y, Miao Y-E, Ji S, Tjiu WW, Liu T (2014) Electrospun carbon nanofibers decorated with ag-Pt bimetallic nanoparticles for selective detection of dopamine. ACS Appl Mater Interfaces 6:12449–12456

    Article  CAS  Google Scholar 

  16. González-Diéguez N, Colina A, López-Palacios J, Heras A (2012) Spectroelectrochemistry at screen-printed electrodes: determination of dopamine. Anal Chem 84:9146–9153

    Article  Google Scholar 

  17. Zhang Y, Qi S, Liu Z, Shi Y, Yue W, Yi C (2016) Rapid determination of dopamine in human plasma using a gold nanoparticle-based dual-mode sensing system. Mater Sci Eng C 61:207–213

    Article  CAS  Google Scholar 

  18. Gu H, Varner EL, Groskreutz SR, Michael AC, Weber SG (2015) In vivo monitoring of dopamine by microdialysis with 1 min temporal resolution using online capillary liquid chromatography with electrochemical detection. Anal Chem 87:6088–6094

    Article  CAS  Google Scholar 

  19. Stewart AJ, Hendry J, Dennany L (2015) Whole blood electrochemiluminescent detection of dopamine. Anal Chem 87:11847–11853

    Article  CAS  Google Scholar 

  20. Liang W, He S, Fang J (2014) Self-assembly of J-aggregate nanotubes and their applications for sensing dopamine. Langmuir 30:805–811

    Article  CAS  Google Scholar 

  21. Huang YL, Tan Y, Feng CQ, Wang SQ, Wu HM, Zhang GX (2019) Synthesis of CuO/gC3N4 composites, and their application to voltammetric sensing of glucose and dopamine. Microchim Acta 186:10–19

    Article  Google Scholar 

  22. Zhao YN, Zhou J, Jia ZM, Huo DJ, Liu QY, Zhong DQ, Hu Y, Yang M, Bian MH, Hou CJ (2019) In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 186:92–102

    Article  Google Scholar 

  23. Le HN, Jeong HK (2015) β-Cyclodextrin-graphite oxide-carbon nanotube composite for enhanced electrochemical supramolecular recognition. J Phys Chem C 119:18671–18677

    Article  CAS  Google Scholar 

  24. Ban R, Abdel-Halim ES, Zhang J, Zhu J-J (2015) β-Cyclodextrin functionalized gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine. Analyst 140:1046–1053

    Article  CAS  Google Scholar 

  25. Zhao GF, Ran X, Zhou X, Tan XP, Lei H, Xie XG, Yang L, Du GB (2018) Green synthesis of hydroxylatopillar[5]arene-modified gold nanoparticles and their self-assembly, sensing, and catalysis applications. ACS Sustain Chem Eng 6:3938–3947

    Article  CAS  Google Scholar 

  26. Joseph R, Naugolny A, Feldman M, Herzog IM, Fridman M, Cohen Y (2016) Cationic pillararenes potently inhibit biofilm formation without affecting bacterial growth and viability. J Am Chem Soc 138:754–757

    Article  CAS  Google Scholar 

  27. Ogoshi T, Hashizume M, Yamagishi T, Nakamoto Y (2010) Synthesis, conformational and host–guest properties of water-soluble pillar[5]arene. Chem Commun 46:3708–3710

    Article  CAS  Google Scholar 

  28. Fu G, Tao L, Zhang M, Chen Y, Tang Y, Lin J, Lu T (2013) One-pot, water-based and high-yield synthesis of tetrahedral palladium nanocrystal decorated graphene. Nanoscale 5:8007–8014

    Article  CAS  Google Scholar 

  29. Zhou X, Yang L, Tan XP, Zhao GF, Xie XG, Du GB (2018) A robust electrochemical immunosensor based on hydroxyl pillar[5]arene@AuNPs@g-C3N4 hybrid nanomaterial for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron 112:31–39

    Article  CAS  Google Scholar 

  30. Shi L, Liang L, Wang F, Liu M, Sun J (2015) Enhanced visible-light photocatalytic activity and stability over g-C3N4/Ag2CO3 composites. J Mater Sci 50:1718–1727

    Article  CAS  Google Scholar 

  31. Qian XC, Zhou X, Ran X, Ni HC, Li Z, Qu Q, Li J, Du GB, Yang L (2019) Facile and clean synthesis of dihydroxylatopillar[5]arene-stabilized gold nanoparticles integrated Pd/MnO2 nanocomposites for robust and ultrasensitive detection of cardiac troponin I. Biosens Bioelectron 130:214–224

    Article  CAS  Google Scholar 

  32. Zhao GF, Zhou X, Ran X, Tan XP, Li TH, Cao M, Yang L, Du GB (2018) Layer-by-layer assembly of anionic−/cationic-pillar[5]arenes multilayer films as chiral interface for electrochemical recognition of tryptophan isomers. Electrochim Acta 277:1–8

    Article  CAS  Google Scholar 

  33. Li H, Chen Q, Schonbeck C, Han B-H (2015) Sugar-functionalized water-soluble pillar[5]arene and its host–guest interaction with fullerene. RSC Adv 5:19041–19047

    Article  CAS  Google Scholar 

  34. Xiao XD, Shi L, Guo LH, Wang JW, Zhang X (2017) Determination of dopamine hydrochloride by host-guest interaction based on water-soluble pillar[5]arene. Spectrochim Acta Part A 173:6–12

    Article  CAS  Google Scholar 

  35. Ogoshi T, Takashima S, Yamagishi T (2015) Molecular recognition with microporous multilayer films prepared by layer-by-layer assembly of pillar[5]arenes. J Am Chem Soc 137:10962–10964

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Basic Research Project of Science and Technology Commission of Chongqing (Grant No. cstc2017jcyjA0656 and cstc2017jcyjAX0031), the Agricultural Joint Special Key Project in Yunnan Province (Grant No. 2018FG001-006), and the National Natural Science Foundation of China (Grant No. 21864024). The authors thank the support of this work by the Program for Innovation Team Building at Institutions of Higher Education in Chongqing, China (Grant No. CXTDX201601039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genfu Zhao or Long Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., He, S., Liu, X. et al. Ultrasensitive electrochemical sensing of dopamine by using dihydroxylatopillar[5]arene-modified gold nanoparticles and anionic pillar[5]arene-functionalized graphitic carbon nitride. Microchim Acta 186, 703 (2019). https://doi.org/10.1007/s00604-019-3869-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3869-8

Keywords

Navigation