Sensing of cocaine using polarized optical microscopy by exploiting the conformational changes of an aptamer at the water/liquid crystal interface

Abstract

Liquid crystals (LCs) have the ability to transduce and amplify a molecular stimulus into optical signals due to their elastic and birefringence properties. An aptamer-based LC sensor for cocaine is described here. 3-Morpholinopropanesulfonic acid with amphipathic structure was used to establish recognition sites at a water/LC interface for the detection of cocaine. The cocaine-binding aptamer is formed at the interface. The conformation of the aptamer undergoes a change on binding cocaine, and this triggers the LCs anchoring transition from homeotropic to planar. Binding can also be detected by polarized optical microscopy. The fluorescence spectroscopy and circular dichroism results are used to prove that the conformation of aptamer changed from a hairpin structure to a special three-way junction structure on binding of cocaine at the interface. The assay works in the 1 nM to 10 μM cocaine concentration range and is specific.

Schematic representation of aptamer-based liquid crystal (LC) biosensor for the detection of cocaine. In this interface biosensing system, after the aptamer binding with cocaine, the conformation of aptamer at the aqueous/LC interface was changed from a hairpin structure to a special three-way junction structure. This triggered the Liquid crystals (LCs) anchoring transition from homeotropic to planar and the sign-on optical signal could be obtained by polarizing optical microscope (POM) in real-time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Grabowski J, Dworkin SI (1985) Cocaine: an overview of current issues. Int J Addict 20(6–7):1065–1088

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124(33):9678–9679

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Taghdisi SM, Danesh NM, Emrani AS, Ramezani M, Abnous K (2015) A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosens Bioelectron 73:245–250

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    He J-L, Yang Y-F, Shen G-L, Yu R-Q (2011) Electrochemical aptameric sensor based on the Klenow fragment polymerase reaction for cocaine detection. Biosens Bioelectron 26(10):4222–4226

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Yu H, Canoura J, Guntupalli B, Lou X, Xiao Y (2017) A cooperative-binding split aptamer assay for rapid, specific and ultra-sensitive fluorescence detection of cocaine in saliva. Chem Sci 8(1):131–141

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Ma C, Wang W, Yang Q, Shi C, Cao L (2011) Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads. Biosens Bioelectron 26(7):3309–3312

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Stojanovic MN, De Prada P, Landry DW (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123(21):4928–4931

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Meng J, Tang X, Zhou B, Xie Q, Yang L (2017) Designing of ordered two-dimensional gold nanoparticles film for cocaine detection in human urine using surface-enhanced Raman spectroscopy. Talanta 164:693–699

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Price AD, Schwartz DK (2008) DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface. J Am Chem Soc 130(26):8188–8194

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Shuzhen L, Yanan Q, Wenting H, Zhaoxia X, Zhaoyang W, Guoli S, Ruqin Y (2012) Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor. Anal Chem 84(1):45–49

    Article  Google Scholar 

  11. 11.

    Brake JM, Daschner MK, Luk YY, Abbott NL (2003) Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302(5653):2094–2097

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Noonan PS, Mohan P, Goodwin AP, Schwartz DK (2014) DNA hybridization-mediated liposome fusion at the aqueous liquid crystal Interface. Adv Funct Mater 24(21):3206–3212

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Zhao D, Peng Y, Xu L, Zhou W, Wang Q, Lin G (2015) Liquid crystal biosensor based on Ni Nanospheres-induced Homeotropic alignment for amplified detection of thrombin. ACS Appl Mater Interfaces 7(42):23418–23422

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Tan H, Yang S, Shen G, Yu R, Wu Z (2010) Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition. Angew Chem 122(46):8790–8793

    Article  Google Scholar 

  15. 15.

    Tan H, Li X, Liao S, Yu R, Wu Z (2014) Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation. Biosens Bioelectron 62(20):84–89

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Xiao F, Tan H, Wu Y, Liao S, Wu Z, Shen G, Yu R (2016) A novel logic gate based on liquid-crystals responding to the DNA conformational transition. Analyst 141(10):2870–2873

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Nutiu R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125(16):4771–4778

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Wang D, Xiao X, Xu S, Liu Y, Li Y (2017) Electrochemical aptamer-based nanosensor fabricated on single au nanowire electrodes for adenosine triphosphate assay. Biosens Bioelectron 99:431–437

    PubMed  Article  Google Scholar 

  20. 20.

    Nguyen VT, Kwon YS, Gu MB (2017) Aptamer-based environmental biosensors for small molecule contaminants. Curr Opin Biotechnol 45:15–23

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    He X, Wang G, Xu G, Zhu Y, Chen L, Zhang X (2013) A simple, fast, and sensitive assay for the detection of DNA, thrombin, and adenosine triphosphate based on dual-hairpin DNA structure. Langmuir ACS J Surf Colloids 29(46):14328–14334

    CAS  Article  Google Scholar 

  22. 22.

    Zou J, Bera T, Davis AA, Liang W, Fang J (2011) Director configuration transitions of polyelectrolyte coated liquid-crystal droplets. J Phys Chem B 115(29):8970–8974

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Vantreeck HJ, Most DR, Grinwald BA, Kupcho KA, Sen A, Bonds MD, Acharya BR (2011) Quantitative detection of a simulant of organophosphonate chemical warfare agents using liquid crystals. Sensors Actuators B Chem 158(1):104–110

    CAS  Article  Google Scholar 

  24. 24.

    Noonan PS, Shavit A, Acharya BR, Schwartz DK (2011) Mixed Alkylsilane functionalized surfaces for simultaneous wetting and Homeotropic anchoring of liquid crystals. ACS Appl Mater Interfaces 3(11):4374–4380

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Carlton RJ, Ma CD, Gupta JK, Abbott NL (2012) Influence of specific anions on the orientational ordering of thermotropic liquid crystals at aqueous interfaces. Langmuir 28(1):31–36

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Noonan PS, Roberts RH, Schwartz DK (2013) Liquid crystal reorientation induced by aptamer conformational changes. J Am Chem Soc 135(13):5183–5189

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Chen MC, Tippana R, Demeshkina NA, Murat P, Balasubramanian S, Myong S, Ferréd’Amaré AR (2018) Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Nature 558:465–469

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Cozzoli L, Gjonaj L, Mca S, Poolman B, Roelfes G (2017) Responsive DNA G-quadruplex micelles. Chem Commun 54(3):260–263

    Article  Google Scholar 

  29. 29.

    Bush DM (2008) The U.S. mandatory guidelines for Federal Workplace Drug Testing Programs: current status and future considerations. Forensic Sci Int 174(2):111–119

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (21675045 and 21874037) and the International Scientific and Technological Cooperation Projects of China (2012DFR40480).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Wu.

Ethics declarations

Competing interests

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 6232 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, G., Chen, Q. et al. Sensing of cocaine using polarized optical microscopy by exploiting the conformational changes of an aptamer at the water/liquid crystal interface. Microchim Acta 186, 724 (2019). https://doi.org/10.1007/s00604-019-3855-1

Download citation

Keywords

  • Liquid crystal biosensor
  • Conformation transition
  • Optical images
  • Anchoring transition
  • Optical signal
  • Fluorescence spectra
  • Circular dichroism
  • Average grayscale value
  • Urine