Skip to main content
Log in

A nanocomposite prepared from platinum particles, polyaniline and a Ti3C2 MXene for amperometric sensing of hydrogen peroxide and lactate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanocomposite consisting of platinum particles, polyaniline and Ti3C2 MXene (Pt/PANI/MXene) was used to modify a screen-printed carbon electrode (SPCE) to obtain sensors for hydrogen peroxide and lactate. This nanocomposite was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) to determine the physical morphologies and the nanocomposite elements. The modified electrode exhibited the improved current response towards hydrogen peroxide (H2O2) compared with an unmodified electrode and provided a low detection limit of 1.0 μM. When lactate oxidase was immobilized on the modified electrode, the electrode responded to lactate via the H2O2 generated in the enzymatic reaction. The lactate assay was performed by amperometry at a constant potential of +0.3 V (vs. Ag/AgCl). The linear range was found to be from 0.005 to 5.0 mM with a detection limit of 5.0 μM for lactate. Ultimately, this biosensor was used for the determination of lactate in milk samples with high stability and reliability.

Schematic representation of a novel platinum particles/polyaniline/MXene nanocomposite (Pt/PANI/MXene) for screen-printed carbon electrode (SPCE) modification to enhance the specific surface area for immobilization of lactate oxidase (LOx) and use as enzymatic biosensor for lactate determination in milk sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar S, Lei Y, Alshareef NH, Quevedo-Lopez MA, Salama KN (2018) Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens Bioelectron 121:243–249. https://doi.org/10.1016/j.bios.2018.08.076

    Article  CAS  PubMed  Google Scholar 

  2. Li Y, Deng X, Tian J, Liang Z, Cui H (2018) Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl Mater Today 13:217–227. https://doi.org/10.1016/j.apmt.2018.09.004

    Article  Google Scholar 

  3. Peng C, Wei P, Chen X, Zhang Y, Zhu F, Cao Y, Wang H, Yu H, Peng F (2018) A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance. Ceram Int 44(15):18886–18893. https://doi.org/10.1016/j.ceramint.2018.07.124

    Article  CAS  Google Scholar 

  4. Wu L, Lu X, Dhanjai, Wu Z-S, Dong Y, Wang X, Zheng S, Chen J (2018) 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron 107:69–75. https://doi.org/10.1016/j.bios.2018.02.021

    Article  CAS  PubMed  Google Scholar 

  5. Chen B, Chang F, Yang J, Tang H, Li C (2014) Microstructure and phase transformation of Ti3AC2 (A = Al, Si) in hydrofluoric acid solution. Cryst Res Technol 49(10):813–819. https://doi.org/10.1002/crat.201400189

    Article  CAS  Google Scholar 

  6. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098. https://doi.org/10.1038/natrevmats.2016.98

    Article  CAS  Google Scholar 

  7. Dall’Agnese Y, Rozier P, Taberna P-L, Gogotsi Y, Simon P (2016) Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J Power Sources 306:510–515. https://doi.org/10.1016/j.jpowsour.2015.12.036

    Article  CAS  Google Scholar 

  8. Kim SJ, Koh H-J, Ren CE, Kwon O, Maleski K, Cho S-Y, Anasori B, Kim C-K, Choi Y-K, Kim J, Gogotsi Y, Jung H-T (2018) Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2):986–993. https://doi.org/10.1021/acsnano.7b07460

    Article  CAS  PubMed  Google Scholar 

  9. Low J, Zhang L, Tong T, Shen B, Yu J (2018) TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J Catal 361:255–266. https://doi.org/10.1016/j.jcat.2018.03.009

    Article  CAS  Google Scholar 

  10. Rasheed PA, Pandey RP, Rasool K, Mahmoud KA (2018) Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode. Sensor Actuat B-Chem. 265:652–659. https://doi.org/10.1016/j.snb.2018.03.103

    Article  CAS  Google Scholar 

  11. Rakhi RB, Nayak P, Xia C, Alshareef HN (2016) Novel amperometric glucose biosensor based on MXene nanocomposite. Sci Rep 6:36422. https://doi.org/10.1038/srep36422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu H, Duan C, Yang C, Shen W, Wang F, Zhu Z (2015) A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensor Actuat B-Chem. 218:60–66. https://doi.org/10.1016/j.snb.2015.04.090

    Article  CAS  Google Scholar 

  13. Lorencova L, Bertok T, Dosekova E, Holazova A, Paprckova D, Vikartovska A, Sasinkova V, Filip J, Kasak P, Jerigova M, Velic D, Mahmoud KA, Tkac J (2017) Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim Acta 235:471–479. https://doi.org/10.1016/j.electacta.2017.03.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang C, Yu S, Yang Q, Wang Q, Xie S, Yang H (2018) Graphene supported platinum nanoparticles modified electrode and its enzymatic biosensing for lactic acid. J Electrochem Soc 165(14):B665–B668. https://doi.org/10.1149/2.0341814jes

    Article  CAS  Google Scholar 

  15. Male KB, Hrapovic S, Luong JHT (2007) Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes. Analyst 132(12):1254–1261. https://doi.org/10.1039/B712478C

    Article  CAS  PubMed  Google Scholar 

  16. Loaiza OA, Lamas-Ardisana PJ, Añorga L, Jubete E, Ruiz V, Borghei M, Cabañero G, Grande HJ (2015) Graphitized carbon nanofiber–Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders. Bioelectrochemistry 101:58–65. https://doi.org/10.1016/j.bioelechem.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  17. Lamas-Ardisana PJ, Loaiza OA, Añorga L, Jubete E, Borghei M, Ruiz V, Ochoteco E, Cabañero G, Grande HJ (2014) Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly(diallyldimethylammonium chloride) films. Biosens Bioelectron 56:345–351. https://doi.org/10.1016/j.bios.2014.01.047

    Article  CAS  PubMed  Google Scholar 

  18. Huang J, Li J, Yang Y, Wang X, Wu B, J-i A, Osa T, Chen Q (2008) Development of an amperometric l-lactate biosensor based on l-lactate oxidase immobilized through silica sol–gel film on multi-walled carbon nanotubes/platinum nanoparticle modified glassy carbon electrode. Mater Sci Eng C 28(7):1070–1075. https://doi.org/10.1016/j.msec.2007.04.033

    Article  CAS  Google Scholar 

  19. He X-R, Yu J-H, Ge S-G, Zhang X-M, Lin Q, Zhu H, Feng S, Yuan L, Huang J-D (2010) Amperometric L-lactate biosensor based on sol-gel film and multi-walled carbon nanotubes/platinum nanoparticles enhancement. Chinese J Anal Chem 38(1):57–61

    CAS  Google Scholar 

  20. Xu B, Zhu M, Zhang W, Zhen X, Pei Z, Xue Q, Zhi C, Shi P (2016) Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater 28(17):3333–3339. https://doi.org/10.1002/adma.201504657

    Article  CAS  PubMed  Google Scholar 

  21. Yu X-f, Y-c L, Cheng J-b, Z-b L, Q-z L, W-z L, Yang X, Xiao B (2015) Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces 7(24):13707–13713. https://doi.org/10.1021/acsami.5b03737

    Article  CAS  PubMed  Google Scholar 

  22. Wang F, Yang C, Duan M, Tang Y, Zhu J (2015) TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens Bioelectron 74:1022–1028. https://doi.org/10.1016/j.bios.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  23. Momeni MM, Nazari Z (2015) Pt/PANI–MWCNTs nanocomposite coating prepared by electropolymerisation–electrodeposition for glycerol electro-oxidation. Surf Eng 31(6):472–479. https://doi.org/10.1179/1743294414Y.0000000441

    Article  CAS  Google Scholar 

  24. Qin J, Wang Z, Fang L, Wang F, Lei L, Li Y, Wang J, Kou Z, He D (2008) In situ electrical resistance study of Ti2AlC to 6 GPa. Solid State Commun 148(9):431–434. https://doi.org/10.1016/j.ssc.2008.09.023

    Article  CAS  Google Scholar 

  25. Wonsawat W, Chuanuwatanakul S, Dungchai W, Punrat E, Motomizu S, Chailapakul O (2012) Graphene-carbon paste electrode for cadmium and lead ion monitoring in a flow-based system. Talanta 100:282–289. https://doi.org/10.1016/j.talanta.2012.07.045

    Article  CAS  PubMed  Google Scholar 

  26. Ren Y, Zhu J, Wang L, Liu H, Liu Y, Wu W, Wang F (2018) Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater Lett 214:84–87. https://doi.org/10.1016/j.matlet.2017.11.060

    Article  CAS  Google Scholar 

  27. Yukird J, Wongtangprasert T, Rangkupan R, Chailapakul O, Pisitkun T, Rodthongkum N (2017) Label-free immunosensor based on graphene/polyaniline nanocomposite for neutrophil gelatinase-associated lipocalin detection. Biosens Bioelectron 87:249–255. https://doi.org/10.1016/j.bios.2016.08.062

    Article  CAS  PubMed  Google Scholar 

  28. Boobphahom S, Rattanawaleedirojn P, Boonyongmaneerat Y, Rengpipat S, Chailapakul O, Rodthongkum N (2019) TiO2 sol/graphene modified 3D porous Ni foam: a novel platform for enzymatic electrochemical biosensor. J Electroanal Chem 833:133–142. https://doi.org/10.1016/j.jelechem.2018.11.031

    Article  CAS  Google Scholar 

  29. Ruecha N, Shin K, Chailapakul O, Rodthongkum N (2019) Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sensor Actuat B-Chem 279:298–304. https://doi.org/10.1016/j.snb.2018.10.024

    Article  CAS  Google Scholar 

  30. Shimomura T, Sumiya T, Ono M, Ito T, T-a H (2012) Amperometric l-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer. Anal Chim Acta 714:114–120. https://doi.org/10.1016/j.aca.2011.11.053

    Article  CAS  PubMed  Google Scholar 

  31. Parra-Alfambra AM, Casero E, Petit-Domínguez MD, Barbadillo M, Pariente F, Vázquez L, Lorenzo E (2011) New nanostructured electrochemical biosensors based on three-dimensional (3-mercaptopropyl)-trimethoxysilane network. Analyst 136(2):340–347. https://doi.org/10.1039/C0AN00475H

    Article  CAS  PubMed  Google Scholar 

  32. Hernández-Ibáñez N, García-Cruz L, Montiel V, Foster CW, Banks CE, Iniesta J (2016) Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens Bioelectron 77:1168–1174. https://doi.org/10.1016/j.bios.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  33. Shkotova L, Bohush A, Voloshina I, Smutok O, Dzyadevych S (2019) Amperometric biosensor modified with platinum and palladium nanoparticles for detection of lactate concentrations in wine. SN Appl Sci 1(4):306. https://doi.org/10.1007/s42452-019-0315-9

    Article  CAS  Google Scholar 

  34. Crespilho FN, Iost RM, Travain SA, Oliveira ON, Zucolotto V (2009) Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosens Bioelectron 24(10):3073–3077. https://doi.org/10.1016/j.bios.2009.03.026

    Article  CAS  PubMed  Google Scholar 

  35. Fox KK, Holsinger VH, Posati LP, Pallansch MJ (1967) Separation of β-lactoglobulin from other milk serum proteins by trichloroacetic acid. J Dairy Sci 50(9):1363–1367. https://doi.org/10.3168/jds.S0022-0302(67)87636-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Thailand Research Fund (TRF) through Research Team Promotion Grant (RTA6080002). Also, we would like to thank Rachadapisek Sompote Fund, Chulalongkorn University. The authors would like to thank Prof. Dr.Charles S. Henry for gramma correction of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadnudda Rodthongkum.

Ethics declarations

Competing interests

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2.25 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neampet, S., Ruecha, N., Qin, J. et al. A nanocomposite prepared from platinum particles, polyaniline and a Ti3C2 MXene for amperometric sensing of hydrogen peroxide and lactate. Microchim Acta 186, 752 (2019). https://doi.org/10.1007/s00604-019-3845-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3845-3

Keywords

Navigation