Palygorskite modified with N-doped carbon for sensitive determination of lead(II) by differential pulse anodic stripping voltammetry

Abstract

A glassy carbon electrode (GCE) was coated with N-doped carbon-modified palygorskite and used as an electrochemical sensor for determination of Pb(II) by differential pulse anodic stripping voltammetry. To obtain high reproducibility and sensitivity, optimum experimental conditions for lead deposition are studied. Voltammetric responses of the modified GCE prepared with different ratios of carbon and palygorskite are examined under same conditions. Compared with a bare GCE, a N-doped carbon modified/GCE and a bismuth-modified GCE, N-doped carbon-modified palygorskite greatly improves the performance of GCE. Response is the best and the interfacial impedance is minimized if the fraction of carbon coating is 31%. This indicates that its performance is due to the synergies between palygorskite and N-doped carbon. Figures of merit for the modified GCE include (a) a preconcentration time of 180 s, (b) a detection limit of 0.42 μg·L−1 (2σ criterion), and (c) a linear response in the 4.0 μg·L−1 to 10.0 mg·L−1 Pb(II) concentration range. The method is successfully applied to the determination of Pb(II) in spiked tape water and gives recoveries between 97.1 and 104.3%.

Schematic representation of different adsorption sites of Pb(II) and the optimal carbon content. The wide detection range is attributed to the synergetic effect of N-doped carbon modified palygorskite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Cao L, Jia J, Wang Z (2008) Sensitive determination of Cd and Pb by differential pulse stripping voltammetry with in situ bismuth-modified zeolite doped carbon paste electrodes. Electrochim Acta 53(5):2177–2182

    CAS  Article  Google Scholar 

  2. 2.

    İnam R, Somer G (2000) A direct method for the determination of selenium and lead in cow's milk by differential pulse stripping voltammetry. Food Chem 69(3):345–350

    Article  Google Scholar 

  3. 3.

    Serrano N, González-Calabuig A, Valle MD (2015) Crown ether-modified electrodes for the simultaneous stripping voltammetric determination of Cd(II), Pb(II) and Cu(II). Talanta 138(8):130–137

    CAS  Article  Google Scholar 

  4. 4.

    Fogg AG, Zanoni MVB, Barros AA, Rodrigues JA, Birch BJ (2015) Aspects of cathodic stripping voltammetry at the hanging mercury drop electrode and in non-mercury disposable sensors. Electroanalysis 12(15):1227–1232

    Article  Google Scholar 

  5. 5.

    Zhao C, Liu H, Wang L (2012) Simultaneous determination of Pb(II) and Cd(II) using an electrode modified with electropolymerized thiadiazole film. Anal Methods 4(11):3586–3592

    CAS  Article  Google Scholar 

  6. 6.

    Kristoff GW, Pascal S, Constant MGB (2011) Determination of manganese and zinc in coastal waters by anodic stripping voltammetry with a vibrating gold microwire electrode. Environ Chem 8(5):475–484

  7. 7.

    Zhong L, Tang A, Yan P, Wang J, Wang Q, Wen X, Cui Y (2019) Palygorskite-template amorphous carbon nanotubes as a superior adsorbent for removal of dyes from aqueous solutions. J Colloid Interface Sci 537:450–457

    CAS  Article  Google Scholar 

  8. 8.

    Zhong L, Tang A, Wen X, Yan P, Wang J, Tan L, Chen J (2018) New finding on Sb (2–3 nm) nanoparticles and carbon simultaneous anchored on the porous palygorskite with enhanced catalytic activity. J Alloys Compd 743:394–402

    CAS  Article  Google Scholar 

  9. 9.

    Yan P, Zhong L, Wen X, Tang A (2018) Fabrication of Cu2O/TiO2/sepiolite electrode for effectively detecting of H2O2. J Electroanal Chem 827:1–9

    CAS  Article  Google Scholar 

  10. 10.

    Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55(1):77–93

    CAS  Article  Google Scholar 

  11. 11.

    Liu H, Nakagawa K, Chaudhary D, Asakuma Y, Tad, Eacute MO (2011) Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chem Eng Res Des 89(11):2356–2364

    CAS  Article  Google Scholar 

  12. 12.

    Trang NTT, Chinh NT, Giang NV, Thanh DTM, Lam TD, Hoang T (2016) PLA/CS/Nifedipine nanocomposite films: properties and the in vitro release of nifedipine. J Electron Mater 45(7):3581–3590

    Article  Google Scholar 

  13. 13.

    Primo A, Sánchez E, Delgado JM, García H (2014) High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon 68(68):777–783

    CAS  Article  Google Scholar 

  14. 14.

    He X, Yang H (2013) Au nanoparticles assembled on palygorskite: Enhanced catalytic property and Au–Au2O3 coexistence. J Mol Catal A-Chem 379(1):219–224

    CAS  Article  Google Scholar 

  15. 15.

    Luo S, Chen Y, Zhou M, Yao C, Xi H (2013) Palygorskite-poly(o-phenylenediamine) nanocomposite: an enhanced electrochemical platform for glucose biosensing. Appl Clay Sci 86(48):59–63

    CAS  Article  Google Scholar 

  16. 16.

    He X, Wang J, Shu Z, Tang A, Yang H (2016) Y2O3 functionalized natural palygorskite as an adsorbent for methyl blue removal. RSC Adv 6(48):41765–41771

    CAS  Article  Google Scholar 

  17. 17.

    Huo C, Yang H (2013) Preparation and enhanced photocatalytic activity of Pd–CuO/palygorskite nanocomposites. Appl Clay Sci 74(74):87–94

    CAS  Article  Google Scholar 

  18. 18.

    Chae HS, Shang HP, Maity A, Choi HJ (2015) Additive role of attapulgite nanoclay on carbonyl iron-based magnetorheological suspension. Colloid Polym Sci 293(1):89–95

    CAS  Article  Google Scholar 

  19. 19.

    Wang W, Wang A (2016) Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Appl Clay Sci 119:18–30

    CAS  Article  Google Scholar 

  20. 20.

    He X, Tang A, Yang H, Ouyang J (2011) Synthesis and catalytic activity of doped TiO2-palygorskite composites. Appl Clay Sci 53(1):80–84

    CAS  Article  Google Scholar 

  21. 21.

    Huo C, Yang H (2010) Synthesis and characterization of ZnO/palygorskite. Appl Clay Sci 50(3):362–366

    CAS  Article  Google Scholar 

  22. 22.

    Jiokeng SLZ, Dongmo LM, Ymélé E, Ngameni E, Tonlé IK (2016) Sensitive stripping voltammetry detection of Pb(II) at a glassy carbon electrode modified with an amino-functionalized attapulgite. Sensor Actuat B-Chem 242:1027–1034

    Article  Google Scholar 

  23. 23.

    Yin QF, Zhang RJ, Zhu YL, Ji-Ming XU, Shi KB, Han WX (2010) Differential pulse voltammetric detection of phenol at glassy carbon electrode modified by CTAB/Attapulgite bipolar membrane. J Anal Sci 26(5):531–534

    CAS  Google Scholar 

  24. 24.

    Luo LQ, Wang X, Ding YP, Li QX, Jia JB, Deng DM (2010) Voltammetric determination of Pb2+ and Cd2+ with montmorillonite-bismuth-carbon electrodes. Appl Clay Sci 50(1):154–157

    CAS  Article  Google Scholar 

  25. 25.

    Xiao L, Xu H, Zhou S, Song T, Wang H, Li S, Wei G, Yuan Q (2014) Simultaneous detection of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode. Electrochim Acta 143(10):143–151

    CAS  Article  Google Scholar 

  26. 26.

    Peng K, Yang H (2017) Carbon hybridized montmorillonite nanosheets: preparation, structural evolution and enhanced adsorption performance. Chem Commun 53(45):6085

    CAS  Article  Google Scholar 

  27. 27.

    Tan L, He M, Tang A, Chen J (2017) Preparation and enhanced catalytic hydrogenation activity of Sb/Palygorskite (PAL) nanoparticles. Nanoscale Res Lett 12(1):460

    Article  Google Scholar 

  28. 28.

    Yang Q, Long M, Tan L, Zhang Y, Ouyang J, Liu P, Tang A (2015) Helical TiO2 nanotube arrays modified by Cu–Cu2O with ultrahigh sensitivity for the nonenzymatic electro-oxidation of glucose. ACS Appl Mater Interfaces 7(23):12719–12730

    CAS  Article  Google Scholar 

  29. 29.

    Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2010) Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors. Electrochim Acta 55(21):6239–6247

    CAS  Article  Google Scholar 

  30. 30.

    Gomez Y, Fernandez L, Borras C, Mostany J, Scharifker B (2011) Characterization of a carbon paste electrode modified with tripolyphosphate-modified kaolinite clay for the detection of lead. Talanta 85(3):1357–1363

    CAS  Article  Google Scholar 

  31. 31.

    Cesarino I, Marino G, Matos Jdo R, Cavalheiro ET (2008) Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of divalent lead, copper and mercury ions. Talanta 75(1):15–21

    CAS  Article  Google Scholar 

  32. 32.

    Jiokeng SLZ, Dongmo LM, Ymélé E, Ngameni E, Tonlé IK (2017) Sensitive stripping voltammetry detection of Pb(II) at a glassy carbon electrode modified with an amino-functionalized attapulgite. Sensors Actuators B Chem 242:1027–1034

    CAS  Article  Google Scholar 

  33. 33.

    Dong YP, Ding Y, Zhou Y, Chen J, Wang CM (2014) Differential pulse anodic stripping voltammetric determination of Pb ion at a montmorillonites/polyaniline nanocomposite modified glassy carbon electrode. J Electroanal Chem 717–718(9):206–212

    Article  Google Scholar 

Download references

Acknowledgements

We are greatly grateful for the National Natural Science Foundation of China (No. 51674293), and the Fundamental Research Funds for the Central Universities of Central South University (No. 502211709, 201810533077, 201810533573).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aidong Tang.

Ethics declarations

Conflict of Interest

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A glassy carbon electrode is modified by N-doped carbon coated palygorskite.

• The modified electrode presents high sensitivity and reproducibility for detection Pb(II) ion.

• The synergy effect between palygorskite and N-doped carbon is confirmed.

Electronic supplementary material

ESM 1

(DOCX 4146 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, P., Zhang, S., Zhang, C. et al. Palygorskite modified with N-doped carbon for sensitive determination of lead(II) by differential pulse anodic stripping voltammetry. Microchim Acta 186, 706 (2019). https://doi.org/10.1007/s00604-019-3843-5

Download citation

Keywords

  • Clay-modified electrode
  • Nanocomposite
  • Modification of palygorskite
  • Conductivity
  • Electroanalysis
  • Alternating current impedance method
  • Detection of heavy metal ions
  • Measurement of lead