Skip to main content
Log in

Dispersed copper nanoparticles promote the electron mobility of nitrogen-rich graphitized carbon aerogel for electrochemical determination of 4-nitrophenol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical method was designed for the determination and simultaneous reduction of 4-nitrophenol (4-NP). A nitrogen-rich carbon aerogel was synthesized from the precursor of phenol, formaldehyde and melamine. Then, copper nanoparticles were embedded into the aerogel, and the resulting material was used to modify a glassy carbon electrode (GCE), which displayed excellent electrocatalytic activity. Sensitive determination of 4-NP by cyclic voltammetry in 0.5 M sulfuric acid was accomplished. Among the various compositions of Cux@NC, the electrode modified with Cu3@NC showed the strongest reduction peak, typically at a potential of −0.30 V vs. reversible hydrogen electrode (RHE). A further study shows the cyclic voltammetry potential range to extend from −0.46 to +0.44 V (vs. RHE) at a scan rate of 100 mV s-1. Differential pulse voltammetric determination of 4-NP gave a lower detection limit of 53 nM and a current sensitivity of 0.7 μA μM−1 cm−2. The method was applied to the determination of 4-NP in spiked water samples, with comparable results of HPLC. The excellent performance was attributed to the highly graphitized structure of the aerogel with its large surface area and small pore size, and the presence of Cu-N structures as active sites.

Schematic representation of electrochemical determination and reduction of 4-nitrophenol under the glassy carbon electrode modified with highly dispersed Cu nanoparticles embedded on nitrogen-rich carbon aerogel. W: working electrode; R: reference electrode; C: counter electrode). Left: copper nanoparticles embedded in an aerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mulchandani P, Lei Y, Chen W, Wang J, Mulchandani A (2002) Microbial biosensor for p-nitrophenol using Moraxella sp. Anal Chim Acta 470:79–86

    Article  CAS  Google Scholar 

  2. Niaz A, Fischer J, Barek J, Yosypchuk B, Sirajuddin, Bhanger MI (2009) Voltammetric determination of 4-Nitrophenol using a novel type of silver amalgam paste electrode. Electroanalysis 21:1786–1791

    Article  CAS  Google Scholar 

  3. Sun Y, Zhou J, Cai W, Zhao R, Yuan J (2015) Hierarchically porous NiAl-LDH nanoparticles as highly efficient adsorbent for p-nitrophenol from water. Appl Surf Sci 349:897–903

    Article  CAS  Google Scholar 

  4. Niazi A, Yazdanipour A (2007) Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares. J Hazard Mater 146:421–427

    Article  CAS  Google Scholar 

  5. Zhang W, Wilson CR, Danielson ND (2008) Indirect fluorescent determination of selected nitro-aromatic and pharmaceutical compounds via UV-photolysis of 2-phenylbenzimidazole-5-sulfonate. Talanta 74:1400–1407

    Article  CAS  Google Scholar 

  6. Padilla-Sanchez JA, Plaza-Bolanos P, Romero-Gonzalez R, Garrido-Frenich A, Martinez Vidal JL (2010) Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography-triple quadrupole-mass spectrometry/mass spectrometry. J Chromatogr A 1217:5724–5731

    Article  CAS  Google Scholar 

  7. Hofmann D, Hartmann F, Herrmann H (2008) Analysis of nitrophenols in cloud water with a miniaturized light-phase rotary perforator and HPLC-MS. Anal Bioanal Chem 391:161–169

    Article  CAS  Google Scholar 

  8. Zhang S, Gao L, Fan D, Lv X, Li Y, Yan Z (2017) Synthesis of boron-doped g-C3N4 with enhanced electro-catalytic activity and stability. Chem Phys Lett 672:26–30

    Article  CAS  Google Scholar 

  9. Luo L-q, Zou X-l, Ding Y-p, Wu Q-s (2008) Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sensors Actuators B Chem 135:61–65

    Article  CAS  Google Scholar 

  10. Chu L, Han L, Zhang X (2011) Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. J Appl Electrochem 41:687–694

    Article  CAS  Google Scholar 

  11. Casella IG, Contursi M (2007) The electrochemical reduction of nitrophenols on silver globular particles electrodeposited under pulsed potential conditions. J Electrochem Soc 154:D697–D702

    Article  CAS  Google Scholar 

  12. Li SC, Hu BC, Ding YW, Liang HW, Li C, Yu ZY, Wu ZY, Chen WS, Yu SH (2018) Wood-derived ultrathin carbon nanofiber aerogels. Angew Chem Int Ed 57:7085–7090

    Article  CAS  Google Scholar 

  13. Xiao X, Xu Y, Lv X, Xie J, Liu J, Yu C (2019) Electrochemical CO2 reduction on copper nanoparticles-dispersed carbon aerogels. J Colloid Interface Sci 545:1–7

    Article  CAS  Google Scholar 

  14. Hwang S-W, Hyun S-H (2004) Capacitance control of carbon aerogel electrodes. J Non-Cryst Solids 347:238–245

    Article  CAS  Google Scholar 

  15. Du H, Li B, Kang F, Fu R, Zeng Y (2007) Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells. Carbon 45:429–435

    Article  CAS  Google Scholar 

  16. Wu P, Zhu W, Dai B, Chao Y, Li C, Li H, Zhang M, Jiang W, Li H (2016) Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization. Chem Eng J 301:123–131

    Article  CAS  Google Scholar 

  17. Liu D, Lu C, Wu J (2018) Gaseous mercury capture by copper-activated nanoporous carbon nitride. Energy Fuel 32:8287–8295

    Article  CAS  Google Scholar 

  18. Song H, Wang Z, Yang J, Jia X, Zhang Z (2017) Facile synthesis of copper/polydopamine functionalized graphene oxide nanocomposites with enhanced tribological performance. Chem Eng J 324:51–62

    Article  CAS  Google Scholar 

  19. Xie X, Liu J, Li T, Song Y, Wang F (2018) Post-formation copper-nitrogen species on carbon black: their chemical structures and active sites for oxygen reduction reaction. Chem Eur J 24:9968–9975

    Article  CAS  Google Scholar 

  20. Ji G, Duan Y, Zhang S, Fei B, Chen X, Yang Y (2017) Selective semihydrogenation of alkynes catalyzed by Pd nanoparticles immobilized on heteroatom-doped hierarchical porous carbon derived from bamboo shoots. ChemSusChem 10:3427–3434

    Article  CAS  Google Scholar 

  21. Zhang S, Xiao X, Lv T, Lv X, Liu B, Wei W, Liu J (2018) Cobalt encapsulated N-doped defect-rich carbon nanotube as pH universal hydrogen evolution electrocatalyst. Appl Surf Sci 446:10–17

    Article  CAS  Google Scholar 

  22. Ding W, Wei Z, Chen S, Qi X, Yang T, Hu J, Wang D, Wan LJ, Alvi SF, Li L (2013) Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew Chem Int Ed 52:11755–11759

    Article  CAS  Google Scholar 

  23. Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB (2016) Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc 138:14915–14922

    Article  CAS  Google Scholar 

  24. Dinesh B, Saraswathi R (2017) Electrochemical synthesis of nanostructured copper-curcumin complex and its electrocatalytic application towards reduction of 4-nitrophenol. Sensors Actuators B Chem 253:502–512

    Article  CAS  Google Scholar 

  25. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M (2012) A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J Hazard Mater 201-202:250–259

    Article  CAS  Google Scholar 

  26. Zhang W, Chang J, Chen J, Xu F, Wang F, Jiang K, Gao Z (2012) Graphene-au composite sensor for electrochemical detection of Para-nitrophenol. Res Chem Intermediat 38:2443–2455

    Article  CAS  Google Scholar 

  27. Ghazizadeh AJ, Afkhami A, Bagheri H (2018) Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure. Microchim Acta 185:10

    Article  Google Scholar 

  28. Devadas B, Rajkumar M, Chen SM, Yeh PC (2014) A novel voltammetric p-nitrophenol sensor based on ZrO2 nanoparticles incorporated into a multiwalled carbon nanotube modified glassy carbon electrode. Anal Methods 6:4686–4691

    Article  CAS  Google Scholar 

  29. Ragu S, Chen S-M, Ranganathan P, Rwei S-P (2016) Fabrication of a novel nickel-Curcumin/Graphene oxide nanocomposites for superior electrocatalytic activity toward the detection of toxic p-nitrophenol. Int J Electrochem Sci 11:9133–9144

    Article  CAS  Google Scholar 

  30. Hu SS, Xu CL, Wang GP, Cui DF (2001) Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 54:115–123

    Article  CAS  Google Scholar 

  31. El Mhammedi MA, Achak M, Bakasse M, Chtaini A (2009) Electrochemical determination of para-nitrophenol at apatite-modified carbon paste electrode: application in river water samples. J Hazard Mater 163:323–328

    Article  Google Scholar 

  32. Yang CH (2004) Electrochemical determination of 4-nitrophenol using a single-wall carbon nanotube film-coated glassy carbon electrode. Microchim Acta 148:87–92

    Article  CAS  Google Scholar 

  33. Chen J, Yang G, Chen M, Li W (2009) Sensitive determination of 4-nitrophenol based on multi-walled carbon Nano-tube/ionic liquid/chitosan composite film modified electrode. Russ J Electrochem 45:1287–1291

    Article  CAS  Google Scholar 

  34. Yin H, Zhou Y, Ai S, Liu X, Zhu L, Lu L (2010) Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Microchim Acta 169:87–92

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial supports of National Natural Science Foundation of China (21607063), the Opening Project of Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology (CJSZ2018002), and Special Fund of Jiangsu Province for the Transformation of Science and Technology and Achievements in Transport (2018Y29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomeng Lv.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1829 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Xiao, X., Sam, D.K. et al. Dispersed copper nanoparticles promote the electron mobility of nitrogen-rich graphitized carbon aerogel for electrochemical determination of 4-nitrophenol. Microchim Acta 186, 853 (2019). https://doi.org/10.1007/s00604-019-3841-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3841-7

Keywords

Navigation